\magnification=1200
\hsize=4in
\overfullrule=0pt
\input amssym
%\def\frac#1 #2 {{#1\over #2}}
\def\emph#1{{\it #1}}
\def\em{\it}
\nopagenumbers
\noindent
%
%
{\bf A. Jim\'enez, M. Kiwi and M. Loebl}
%
%
\medskip
\noindent
%
%
{\bf Satisfying States of Triangulations of a Convex $n$-gon}
%
%
\vskip 5mm
\noindent
%
%
%
%
In this work we count the number of satisfying states of
triangulations of a convex $n$-gon using the transfer matrix method.
We show an exponential (in $n$) lower bound. We also give the exact
formula for the number of satisfying states of a strip of triangles.
\bye