\magnification=1200
\hsize=4in
\overfullrule=0pt
\input amssym
%\def\frac#1 #2 {{#1\over #2}}
\def\emph#1{{\it #1}}
\def\em{\it}
\nopagenumbers
\noindent
%
%
{\bf Mark A. Shattuck and Carl G. Wagner}
%
%
\medskip
\noindent
%
%
{\bf A New Statistic on Linear and Circular $r$-Mino Arrangements}
%
%
\vskip 5mm
\noindent
%
%
%
%
We introduce a new statistic on linear and circular $r$-mino
arrangements which leads to interesting polynomial generalizations of
the $r$-Fibonacci and $r$-Lucas sequences. By studying special values
of these polynomials, we derive periodicity and parity theorems for
this statistic.
\bye