Biblio Index

Export 235 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
G
Phung, V. M., Phan, T. T., & Mai, H. A.. (2019). On generalized least square approximation. Dolomites Research Notes on Approximation, 12(1), 101-110. presented at the 11/2019. doi:10.14658/pupj-drna-2019-1-10
PDF icon PhungPhanMai_2019_GLS.pdf (258.99 KB)
Cavoretto, R., De Rossi, A., & Erb, W.. (2022). GBFPUM - A MATLAB Package for Partition of Unity Based Signal Interpolation and Approximation on Graphs. Dolomites Research Notes on Approximation, 15(2), 25-34. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-3
PDF icon 03_DRNA_SA2022.pdf (5.05 MB)
F
PDF icon Remarks_DRNA2017.pdf (139.12 KB)
Mejstrik, T. (2022). The finiteness conjecture for 3 × 3 binary matrices. Dolomites Research Notes on Approximation, 15(5), 24-38. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-3
PDF icon MEJSTRIK.pdf (458.84 KB)
Occorsio, D., Russo, M. G., & Themistoclakis, W.. (2022). Filtered integration rules for finite weighted Hilbert transforms II. Dolomites Research Notes on Approximation, 15(3), 93-104. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-9
PDF icon 09_occorsio.pdf (273.2 KB)
Camargo, A., & De Marchi, S.. (2015). A few remarks on “On certain Vandermonde determinants whose variables separate". Dolomites Research Notes on Approximation, 8(1), 1–11. presented at the 09/2015. doi:10.14658/pupj-drna-2015-1-1
PDF icon CamargoDemarchi-2015-RVD.pdf (285.77 KB)
Bos, L. (2018). Fekete Points as Norming Sets. Dolomites Research Notes on Approximation, 11(4), 26-34. presented at the 11/2018. doi:10.14658/pupj-drna-2018-4-3
PDF icon Bos_DRNA2018.pdf (211.23 KB)
De Rossi, A., Perracchione, E., & Venturino, E.. (2016). Fast strategy for PU interpolation: An application for the reconstruction of separatrix manifolds. Dolomites Research Notes on Approximation, 9(Special_Issue), 3-12. presented at the 09/2016. doi:10.14658/pupj-drna-2016-Special_Issue-2
PDF icon DeRossiPerracchioneVenturino_KMFA2016.pdf (347.1 KB)
Zivcovich, F. (2019). Fast and accurate computation of divided differences for analytic functions, with an application to the exponential function. Dolomites Research Notes on Approximation, 12(1), 28-42. presented at the 05/2019. doi:10.14658/pupj-drna-2019-1-4
PDF icon Zivcovich_2019_FAC.pdf (336.43 KB)
Dykes, L., & Reichel, L.. (2013). A family of range restricted iterative methods for linear discrete ill-posed problems. Dolomites Research Notes on Approximation, 6(Special_Issue), 27-36. presented at the 09/2013. doi:10.14658/pupj-drna-2013-Special_Issue-5
PDF icon DykesReichel-2013-FRR.pdf (299.59 KB)
E
Stawiska, M. (2021). An extremal subharmonic function in non-archimedean potential theory. Dolomites Research Notes on Approximation, 14(3), 74-82. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-9
PDF icon Stawiska_MB_2021.pdf (333.01 KB)
Piazzon, F. (2018). The extremal plurisubharmonic function of the torus. Dolomites Research Notes on Approximation, 11(4), 62-72. presented at the 11/2018. doi:10.14658/pupj-drna-2018-4-6
PDF icon Piazzon_DRNA2018.pdf (1.66 MB)
Merrien, J. - L., & Sauer, T.. (2021). Extra Regularity of Hermite Subdivision Schemes. Dolomites Research Notes on Approximation, 14(2), 85-94. presented at the 04/2021. doi:10.14658/pupj-drna-2021-2-10
PDF icon SauerMerrienMATA2020.pdf (307.08 KB)
Demirci, K., Dirik, F., & Yıldız, S.. (2023). An Extension of Korovkin Theorem via P-Statistical A-Summation Process. Dolomites Research Notes on Approximation, 16(2), 26-37. presented at the 01/2023. doi:10.14658/pupj-drna-2023-2-4
PDF icon 04_COMSS_22_Demirci_etal.pdf (280.28 KB)
Rack, H. - J., & Vajda, R.. (2019). An explicit univariate and radical parametrization of the sextic proper Zolotarev polynomials in power form. Dolomites Research Notes on Approximation, 12(1), 43-50. presented at the 05/2019. doi:10.14658/pupj-drna-2019-1-5
PDF icon RackVajda_2019_EUR.pdf (190.11 KB)
Bos, L., & Polato, F.. (2017). An Explicit Example of Leave-One-Out Cross-Validation Parameter Estimation for a Univariate Radial Basis Function. Dolomites Research Notes on Approximation, 10(1), 43-50. presented at the 09/2017. doi:10.14658/pupj-drna-2017-1-6
PDF icon BosPolato_2017_EEL.pdf (207.39 KB)
Angeloni, L., & Vinti, G.. (2021). Estimates in variation for multivariate sampling-type operators. Dolomites Research Notes on Approximation, 14(2), 1-9. presented at the 04/2021. doi:10.14658/pupj-drna-2021-2-2
PDF icon AngeloniVintiMATA2020.pdf (213.62 KB)
Chatzakou, M., & Sarantopoulos, Y.. (2021). Estimates for polynomial norms on Banach spaces. Dolomites Research Notes on Approximation, 14(3), 40-52. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-5
PDF icon Chatzakou_Sarantopoulos_MB_2021.pdf.pdf (338.29 KB)
Render, H., & Kounchev, O.. (2013). Error Estimates for Polyharmonic Cubature Formulas. Dolomites Research Notes on Approximation, 6(Special_Issue), 62-73. presented at the 09/2013. doi:10.14658/pupj-drna-2013-Special_Issue-8
PDF icon RenderKounchev-2013-EPC.pdf (188.94 KB)
Karvonen, T. (2022). Error Bounds and the Asymptotic Setting in Kernel-Based Approximation. Dolomites Research Notes on Approximation, 15(3), 65-77. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-7
PDF icon 07_karvonen.pdf (421.63 KB)
Francomano, E., Hilker, F. M., Paliaga, M., & Venturino, E.. (2017). An efficient method to reconstruct invariant manifolds of saddle points. Dolomites Research Notes on Approximation, 10(Special_Issue), 25-30. presented at the 05/2017. doi:10.14658/pupj-drna-2017-Special_Issue-5
PDF icon FrancomanoHilkerPaliagaVenturino_DRNA2017.pdf (352.25 KB)
Allasia, G., Besenghi, R., Cavoretto, R., & De Rossi, A.. (2010). Efficient approximation algorithms. Part II: Scattered data interpolation based on strip searching procedures. Dolomites Research Notes on Approximation, 3(1), 39-78. presented at the 09/2010. doi:10.14658/pupj-drna-2010-1-3
PDF icon Allasia-2010-EAA2.pdf (1.14 MB)
Allasia, G., Besenghi, R., Cavoretto, R., & De Rossi, A.. (2010). Efficient approximation algorithms. Part I: approximation of unknown fault lines from scattered data. Dolomites Research Notes on Approximation, 3(1), 7-38. presented at the 09/2010. doi:10.14658/pupj-drna-2010-1-2
PDF icon Allasia-2010-EAA1.pdf (2.13 MB)
Danek, T., Noseworthy, A., & Slawinski, M. A.. (2018). Effects of norms on general Hookean solids for their isotropic counterparts. Dolomites Research Notes on Approximation, 11(1), 15-28. presented at the 03/2018. doi:10.14658/pupj-drna-2018-1-3
PDF icon DanekNoseworthySlawinski_2018_NGH.pdf (6.19 MB)
Danek, T., & Slawinski, M. A.. (2014). On effective transversely isotropic elasticity tensors based on Frobenius and L2 operator norms. Dolomites Research Notes on Approximation, 7(Special_Issue), 1-6. presented at the 09/2014. doi:10.14658/pupj-drna-2014-Special_Issue-2
PDF icon DanekSlawinski-2014-ETI.pdf (225.33 KB)

Pages