Biblio Index

Export 235 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
I
Kherchouche, K., Bellour, A., & Lima, P.. (2021). Iterative Collocation Method for Solving a class of Nonlinear Weakly Singular Volterra Integral Equations. Dolomites Research Notes on Approximation, 14(1), 33-41. presented at the 04/2021. doi:10.14658/pupj-drna-2021-1-4
PDF icon KherchoucheBellourLima_2021_WSV.pdf (152.8 KB)
Larsson, E., & Sundin, U.. (2020). An investigation of global radial basis function collocation methods applied to Helmholtz problems. Dolomites Research Notes on Approximation, 13(1), 65-85. presented at the 12/2020. doi:10.14658/PUPJ-DRNA-2020-1-8
PDF icon LarssonSundin_2020_IGR.pdf (974.09 KB)
Dencker, P., & Erb, W.. (2017). Introduction to Lissajous curves and d-dimensional polynomial interpolation. Dolomites Research Notes on Approximation, 10(Special_Issue). presented at the 06/2017.
PDF icon DRNA2017_Erb_ILC.pdf (1.58 MB)
Fasshauer, G. (2008). Introduction. Dolomites Research Notes on Approximation, 1(1). presented at the 09/2008.
PDF icon Fasshauer-2008-Lecture1.pdf (1.6 MB)
Wittwar, D., Santin, G., & Haasdonk, B.. (2018). Interpolation with uncoupled separable matrix-valued kernels. Dolomites Research Notes on Approximation, 11(3), 23-39. presented at the 11/2018. doi:10.14658/pupj-drna-2018-3-4
PDF icon Wittwaretal_DRNA2018.pdf (341.66 KB)
Elefante, G., Erb, W., Marchetti, F., Perracchione, E., Poggiali, D., & Santin, G.. (2022). Interpolation with the polynomial kernels. Dolomites Research Notes on Approximation, 15(4), 45-60. presented at the 12/2022. doi:10.14658/pupj-drna-2022-4-5
PDF icon 05_60thDM.pdf (558.9 KB)
Bos, L., & Lagu, I.. (2013). Interpolation on Real Algebraic Curves to Polynomial Data. Dolomites Research Notes on Approximation, 6(1), 1-25. presented at the 09/2013. doi:10.14658/pupj-drna-2013-1-1
PDF icon BosLagu-2013-IRA.pdf (310.71 KB)
Albrecht, G., Beccari, C. V., & Romani, L.. (2022). Interpolating sequences of 3D-data with C^2 quintic PH B-spline curves. Dolomites Research Notes on Approximation, 15(3), 1-11. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-2
PDF icon 02_albrecht.pdf (1.52 MB)
Deng, C., Meng, H., & Xu, H.. (2017). Interpolating given tangent vectors or curvatures by preprocessed incenter subdivision scheme. Dolomites Research Notes on Approximation, 10(1), 51-57. presented at the 10/2017. doi:10.14658/pupj-drna-2017-1-7
PDF icon DengMengXu_2017_IGT.pdf (489.81 KB)
Rossini, M. (2018). Interpolating functions with gradient discontinuities via Variably Scaled Kernels. Dolomites Research Notes on Approximation, 11(2), 3-14. presented at the 01/2018. doi:10.14658/pupj-drna-2018-2-2
PDF icon Rossini_DRNA2018.pdf (1.89 MB)
Acar, T. (2023). International E-Conference on Mathematical and Statistical Sciences: A Selcuk Meeting 2022 (ICOMSS’22). Dolomites Research Notes on Approximation, 16(2), I-III. presented at the 01/2023. Retrieved from https://drna.padovauniversitypress.it/2023/2/0
PDF icon 00_COMSS_22_intro.pdf (4.62 MB)
Suryanarayana, G., Cools, R., & Nuyens, D.. (2015). Integration and Approximation with Fibonacci lattice points. Dolomites Research Notes on Approximation, 8(Special_Issue), 92-101. presented at the 12/2015. doi:10.14658/pupj-drna-2015-Special_Issue-9
PDF icon Cools_etal_10YPDPTS.pdf (2.13 MB)
Baran, M., Kowalska, A., Milówka, B., & Ozorka, P.. (2015). Identities for a derivation operator and their applications. Dolomites Research Notes on Approximation, 8(Special_Issue), 102-110. presented at the 12/2015. doi:10.14658/pupj-drna-2015-Special_Issue-10
PDF icon BKMO_10YPDPTS.pdf (237.39 KB)
H
Plonka, G. (2014). How to construct your own directional wavelet frame?. Dolomites Research Notes on Approximation, 7(Special_Issue). presented at the 09/2014.
PDF icon Dolomites14-1.pdf (1.75 MB)
Bulai, I. Martina, & Pedersen, M. Gram. (2018). Hopf bifurcation analysis of the fast subsystem of a polynomial phantom burster model. Dolomites Research Notes on Approximation, 11(3), 3-10. presented at the 11/2018. doi:10.14658/pupj-drna-2018-3-2
PDF icon BulaiPedersen_DRNA2018.pdf (333.08 KB)
Kroó, A.. (2023). Homogeneous polynomial approximation on convex and star like domains. Dolomites Research Notes on Approximation, 16(1), 1-9. presented at the 01/2023. doi:10.14658/pupj-drna-2023-1-1
PDF icon KrooSurvey2023.pdf (258.72 KB)
Baran, M., & Białas-Cież, L.. (2014). Hölder continuity of the Green function, Markov-type inequality and a capacity related to HCP. Dolomites Research Notes on Approximation, 7(Special_Issue), 16-21. presented at the 09/2014. doi:10.14658/pupj-drna-2014-Special_Issue-4
PDF icon BaranBialas-2014-HCG.pdf (231.94 KB)
G
Van Barel, M., & Humet, M.. (2015). Good point sets and corresponding weights for bivariate discrete least squares approximation. Dolomites Research Notes on Approximation, 8(Special_Issue), 37-50. presented at the 11/2015. doi:10.14658/pupj-drna-2015-Special_Issue-5
PDF icon VanBarelHumet_10YPDPTS.pdf (1.2 MB)
Wright, G. (2013). Good bases for kernel spaces. Dolomites Research Notes on Approximation, 6(Special_Issue). presented at the 09/2013.
PDF icon Wright-2013-Lecture03.pdf (16.29 MB)
Vianello, M. (2018). Global polynomial optimization by norming sets on sphere and torus. Dolomites Research Notes on Approximation, 11(1), 10-14. presented at the 02/2018. doi:10.14658/pupj-drna-2018-1-2
PDF icon Vianello_2018_GPO.pdf (230.17 KB)
Białas-Cież, L., & Eggink, R.. (2014). Global and Local Markov Inequalities in the Complex Plane. Dolomites Research Notes on Approximation, 7(Special_Issue), 34-38. presented at the 09/2014. doi:10.14658/pupj-drna-2014-Special_Issue-7
PDF icon BialasEggink-2014-GLM.pdf (217.4 KB)
Wright, G. (2013). Global and local kernel methods for approximating derivatives on the sphere. Dolomites Research Notes on Approximation, 6(Special_Issue). presented at the 09/2013.
PDF icon Wright-2013-Lecture04.pdf (15.33 MB)
Demaret, L., & Iske, A.. (2010). Geometrical Methods for Adaptive Approximation of Image and Video Data. Dolomites Research Notes on Approximation, 3(1). presented at the 09/2010.
PDF icon Iske-2010-Lecture1.pdf (4.85 MB)
Irigoyen, A. (2016). Geometric conditions for the reconstruction of a holomorphic function by an interpolation formula. Dolomites Research Notes on Approximation, 9(1), 1-15. presented at the 06-2016. doi:10.14658/pupj-drna-2016-1-1
PDF icon Irigoyen_2016_GCR.pdf (355.89 KB)
Plonka, G., & Peter, T.. (2014). A generalized Prony method for sparse approximation. Dolomites Research Notes on Approximation, 7(Special_Issue). presented at the 09/2014.
PDF icon Dolomites14-3.pdf (718.05 KB)

Pages