Biblio Index

Export 234 results:
[ Author(Desc)] Title Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
B
Bulai, I. Martina, De Bonis, M. C., Laurita, C., & Sagaria, V.. (2022). MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models. Dolomites Research Notes on Approximation, 15(2), 13-24. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-2
PDF icon 02_DRNA_SA2022.pdf (558.4 KB)
C
Caliari, M., De Marchi, S., Levenberg, N., & Vianello, M.. (2014). Multivariate Approximation 2013. Dolomites Research Notes on Approximation, 7(Special_Issue), I-II. presented at the 09/2014. doi:10.14658/pupj-drna-2014-Special_Issue-1
PDF icon PrefaceMA13.pdf (811.97 KB)
Calvi, J. - P., & Phung, V. M.. (2015). On the approximation of multivariate entire functions by Lagrange interpolation polynomials. Dolomites Research Notes on Approximation, 8(Special_Issue), 11-16. presented at the 11/2015. doi:10.14658/pupj-drna-2015-Special_Issue-2
PDF icon CalviManh_10YPDPTS.pdf (212.61 KB)
Camargo, A., & De Marchi, S.. (2015). A few remarks on “On certain Vandermonde determinants whose variables separate". Dolomites Research Notes on Approximation, 8(1), 1–11. presented at the 09/2015. doi:10.14658/pupj-drna-2015-1-1
PDF icon CamargoDemarchi-2015-RVD.pdf (285.77 KB)
Camargo, A. (2017). A comparison between extended Floater–Hormann interpolants and trigonometric interpolation. Dolomites Research Notes on Approximation, 10(1), 23-32. presented at the 07/2017. doi:10.14658/pupj-drna-2017-1-4
PDF icon Camargo_2017_CBE.pdf (256.48 KB)
Campagna, R., Bayona, V., & Cuomo, S.. (2020). Using local PHS+poly approximations for Laplace Transform Inversion by Gaver-Stehfest algorithm. Dolomites Research Notes on Approximation, 13(1), 55-64. presented at the 12/2020. doi:10.14658/PUPJ-DRNA-2020-1-7
PDF icon CampagnaBayonaCuomo_2020_UPA.pdf (288.27 KB)
Campagna, R., Conti, C., & Cuomo, S.. (2019). Smoothing exponential-polynomial splines for multiexponential decay data. Dolomites Research Notes on Approximation, 12(1), 86-100. presented at the 09/2019. doi:10.14658/pupj-drna-2019-1-9
PDF icon CampagnaContiCuomo_2019_SES.pdf (666.05 KB)
Campiti, M. (2022). Korovkin-type approximation of set-valued functions with convex graphs. Dolomites Research Notes on Approximation, 15(5), 51-55. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-5
PDF icon CAMPITI.pdf (227.12 KB)
Candito, P., D’Aguì, G., & Livrea, R.. (2021). Two positive solutions for a nonlinear parameter-depending algebraic system. Dolomites Research Notes on Approximation, 14(2), 10-17. presented at the 04/2021. doi:10.14658/pupj-drna-2021-2-3
PDF icon CanditoDaguiLivreaMATA2020.pdf (144.55 KB)
Cantarini, M., Costarelli, D., & Vinti, G.. (2020). A solution of the problem of inverse approximation for the sampling Kantorovich operators in case of Lipschitz functions. Dolomites Research Notes on Approximation, 13(1), 30-35. presented at the 03/2019. doi:10.14658/PUPJ-DRNA-2020-1-4
PDF icon CantariniCostarelliVinti_2020_SPI.pdf (183.69 KB)
Caratelli, D., Cesarano, C., & Ricci, P. E.. (2021). Computation of the Bell-Laplace transforms. Dolomites Research Notes on Approximation, 14(1), 74-91. presented at the 10-2021. doi:10.14658/pupj-drna-2021-1-7
PDF icon CaratelliCesaranoRicci_2021_BLT.pdf (2.21 MB)
Caratelli, D., & Ricci, P. E.. (2022). On a set of sine and cosine Fourier transforms of nested functions. Dolomites Research Notes on Approximation, 15(1), 11-19. presented at the 11/2022. doi:10.14658/pupj-drna-2022-1-2
PDF icon CaratelliRicci_2022_FTNF.pdf (11.18 MB)
Carnicer, J., & Godés, C.. (2015). Lagrange polynomials of lower sets. Dolomites Research Notes on Approximation, 8(Special_Issue), 1-10. presented at the 11/2015. doi: 10.14658/pupj-drna-2015-Special_Issue-1
PDF icon CarnicerGodes_10YPDPTS.pdf (367.47 KB)
Cavoretto, R., & De Rossi, A.. (2016). Kernel-based Methods and Function Approximation 2016. Dolomites Research Notes on Approximation, 9(Special_Issue), 1-2. presented at the 09/2016. Retrieved from http://drna.padovauniversitypress.it/2016/specialissue/1
PDF icon CavorettoDeRossi_KMFA2016.pdf (629.87 KB)
Cavoretto, R., De Rossi, A., & Erb, W.. (2022). GBFPUM - A MATLAB Package for Partition of Unity Based Signal Interpolation and Approximation on Graphs. Dolomites Research Notes on Approximation, 15(2), 25-34. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-3
PDF icon 03_DRNA_SA2022.pdf (5.05 MB)
Cavoretto, R., & De Rossi, A.. (2018). Multivariate Approximation: Theory, Algorithms & Applications (MATAA17). Dolomites Research Notes on Approximation, 11(2), 1-2. presented at the 01/2018. doi:10.14658/pupj-drna-2018-2-1
PDF icon MATAA17_DRNA2018.pdf (464.92 KB)
Cavoretto, R., De Rossi, A., Lancellotti, S., & Perracchione, E.. (2022). Software Implementation of the Partition of Unity Method. Dolomites Research Notes on Approximation, 15(2), 35-46. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-4
PDF icon 04_DRNA_SA2022.pdf (655.36 KB)
Cavoretto, R., & De Rossi, A.. (2022). Software for Approximation 2022 (SA2022). Dolomites Research Notes on Approximation, 15(2), I-II. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-0
PDF icon 00_DRNA_SA2022.pdf (972.15 KB)
Cesarano, C., Ramírez, W., & Khan, S.. (2022). A new class of degenerate Apostol-type Hermite polynomials and applications. Dolomites Research Notes on Approximation. presented at the 04/2022, Padova, IT: Padova University Press. doi:10.14658/pupj-drna-2022-1-1
PDF icon CesaranoRamirezKhan_2022_DAH.pdf (225.93 KB)
Ç
Çetin, N., Costarelli, D., Natale, M., & Vinti, G.. (2022). Nonlinear multivariate sampling Kantorovich operators: quantitative estimates in functional spaces. Dolomites Research Notes on Approximation, 15(3), 12-25. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-3
PDF icon 03_cetin.pdf (279.75 KB)
C
Chatzakou, M., & Sarantopoulos, Y.. (2021). Estimates for polynomial norms on Banach spaces. Dolomites Research Notes on Approximation, 14(3), 40-52. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-5
PDF icon Chatzakou_Sarantopoulos_MB_2021.pdf.pdf (338.29 KB)
Chatzakou, M., & Sarantopoulos, Y.. (2019). Bernstein and Markov-type inequalities for polynomials on Lp(μ) spaces. Dolomites Research Notes on Approximation, 12(Special_Issue), 16-28. presented at the 10/2019. doi:10.14658/pupj-drna-2019-Special_Issue-4
PDF icon AKroo_ChatzakouSarantopoulos.pdf (210.27 KB)
Chen, M., Ling, L., & Su, Y.. (2022). Solving interpolation problems on surfaces stochastically and greedily. Dolomites Research Notes on Approximation, 15(3), 26-36. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-4
PDF icon 04_chen.pdf (1.3 MB)
Chen, Q., & Prautzsch, H.. (2013). Subdivision by WAVES – Weighted AVEraging Schemes. Dolomites Research Notes on Approximation, 6(Special_Issue), 9-19. presented at the 09/2013. doi:10.14658/pupj-drna-2013-Special_Issue-3
PDF icon ChenPrautzsch-2013-SBW.pdf (946.38 KB)
Conte, D., Guarino, N., Pagano, G., & Paternoster, B.. (2022). Positivity-preserving and elementary stable nonstandard method for a COVID-19 SIR model. Dolomites Research Notes on Approximation, 15(5), 65-77. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-7
PDF icon CONTE_et_al.pdf (370.75 KB)

Pages