Spaces with countable sn-networks

GE YING

Abstract. In this paper, we prove that a space X is a sequentially-quotient π -image of a metric space if and only if X has a point-star sn-network consisting of cs^* -covers. By this result, we prove that a space X is a sequentially-quotient π -image of a separable metric space if and only if X has a countable sn-network, if and only if X is a sequentially-quotient compact image of a separable metric space; this answers a question raised by Shou Lin affirmatively. We also obtain some results on spaces with countable sn-networks.

Keywords: separable metric space, sequentially-quotient $(\pi, \text{ compact})$ mapping, point-star sn-network, cs*-cover

Classification: Primary 54C05, 54C10; Secondary 54D65, 54E40

1. Introduction

In his book ([8]), Shou Lin proved that a space X is a quotient compact image of a separable metric space if and only if X is a quotient π -image of a separable metric space, if and only if X has a countable weak base. Then, are there similar results on sequentially-quotient images of separable metric spaces? Related to this question, Shou Lin and Yan proved that a space X is a sequentially-quotient compact image of a separable metric space if and only if X has a countable sn-network ([10]). But they do not know whether sequentially-quotient π -images of separable metric spaces and sequentially-quotient compact images of separable metric spaces are equivalent. So Shou Lin raised the following question ([12]).

Question 1.1. Has a sequentially-quotient π -image of a separable metric space a countable sn-network?

In this paper, we give a characterization of sequentially-quotient π -images of metric spaces to prove that a space X is a sequentially-quotient π -image of a separable metric space if and only if X has a countable sn-network, which answers the above question affirmatively. We also obtain some results on spaces with countable sn-networks.

Throughout this paper, all spaces are assumed to be regular T_1 , and all mappings are continuous and onto. \mathbb{N} and ω denote the set of all natural numbers and

The first author was supported in part by NSF of the Education Committee of Jiangsu Province in China #02KJB110001.

the first infinite ordinal respectively. Let $x \in X$, \mathcal{U} be a collection of subsets of X, f be a mapping. Then $st(x,\mathcal{U}) = \bigcup \{U \in \mathcal{U} : x \in U\}$, $f(\mathcal{U}) = \{f(U) : U \in \mathcal{U}\}$. The sequence $\{x_n : n \in \mathbb{N}\}$, the sequence $\{P_n : n \in \mathbb{N}\}$ of subsets and the sequence $\{P_n : n \in \mathbb{N}\}$ of collections of subsets are abbreviated to $\{x_n\}$, $\{P_n\}$ and $\{P_n\}$ respectively. We use the convention that every convergent sequence contains its limit point. For example, if we say that a sequence converging to x is eventually in A, or frequently in A, it is to be understood that $x \in A$. (M,d) denotes a metric space with metric d, $B(a,\varepsilon) = \{b \in M : d(a,b) < \varepsilon\}$. (α_n) denotes a point of a Tychonoff-product space, the n-th coordinate is α_n . For terms which are not defined here we refer to [1].

Definition 1.2 ([16]). Let (M,d) be a metric space. $f: M \longrightarrow X$ is said to be a π -mapping, if $d(f^{-1}(x), X - f^{-1}(U)) > 0$ for every $x \in X$ and every open neighborhood U of x.

Definition 1.3 ([10]). Let $f: X \longrightarrow Y$ be a mapping. f is a quotient mapping if whenever $f^{-1}(U)$ is open in X, then U is open in Y; f is a sequentially-quotient mapping, if for every convergent sequence S in Y, there is a convergent sequence L in X such that f(L) is a subsequence of S; f is a compact mapping, if $f^{-1}(y)$ is compact in X for every $y \in Y$; f is a perfect mapping, if f is a closed and compact mapping.

Remark 1.4. (1) compact mappings defined on metric spaces are π -mappings.

- (2) If the domain is sequential, then quotient mapping \Longrightarrow sequentially-quotient mapping ([8, Proposition 2.1.16]).
- (3) If the image is sequential, then sequentially-quotient mapping \Longrightarrow quotient mapping ([8, Proposition 2.1.16]).

Definition 1.5 ([3]). Let X be a space.

- (1) Let $x \in X$. A subset P of X is a sequential neighborhood of x (called a sequence barrier at x in [9]) if every sequence $\{x_n\}$ converging to x is eventually in P, i.e., $x \in P$ and there is $k \in \mathbb{N}$ such that $x_n \in P$ for all n > k.
- (2) A subset P of X is sequentially open if P is a sequential neighborhood of x for every $x \in P$. X is sequential if every sequentially open subset of X is open.

Remark 1.6. P is a sequential neighborhood of x if and only if every sequence $\{x_n\}$ converging to x is frequently in P, i.e., $x \in P$ and for every $k \in \mathbb{N}$, there is n > k such that $x_n \in P$.

Definition 1.7 ([10]). Let \mathcal{P} be a cover of a space X.

- (1) \mathcal{P} is a k-network of X, if whenever K is a compact subset of an open set U, there is a finite $\mathcal{F} \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{F} \subset U$.
- (2) \mathcal{P} is a cs-network of X, if every convergent sequence S converging to a point $x \in U$ with U open in X, is eventually in $P \subset U$ for some $P \in \mathcal{P}$.
- (3) \mathcal{P} is a cs^* -network of X, if every convergent sequence S converging to a point $x \in U$ with U open in X, is frequently in $P \subset U$ for some $P \in \mathcal{P}$.

- **Definition 1.8** ([10]). Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X. Assume that \mathcal{P} satisfies the following (a) and (b) for every $x \in X$.
- (a) \mathcal{P} is a network of X, that is, whenever $x \in U$ with U open in X, then $x \in P \subset U$ for some $P \in \mathcal{P}_x$, where \mathcal{P}_x is called a network at x.
 - (b) If $P_1, P_2 \in \mathcal{P}_x$, then there exists $P \in \mathcal{P}_x$ such that $P \subset P_1 \cap P_2$.
- (1) \mathcal{P} is called a weak base of X, if for $G \subset X$, G is open in X if and only if for every $x \in G$ there exists $P \in \mathcal{P}_x$ such that $P \subset G$, where \mathcal{P}_x is called a weak neighborhood base at x.
- (2) \mathcal{P} is called an *sn*-network of X, if every element of \mathcal{P}_x is a sequential neighborhood of x for every $x \in X$, where \mathcal{P}_x is called an *sn*-network at x.
- **Definition 1.9** ([4], [5], [13], [17]). A space X is a g-metric space (resp. an sn-metric space) if X has a σ -locally finite weak base (resp. a σ -locally finite sn-network). A space X is called g-first countable (resp. sn-first countable), if X has a weak base (resp. an sn-network) $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ such that \mathcal{P}_x is countable for every $x \in X$. A space X is an \aleph -space if X has a σ -locally finite k-network; X is an \aleph 0-space if X has a countable k-network.
- Remark 1.10. (1) In [9], sn-networks are said to be universal cs-networks; sn-first countable is said to be universally csf-countable; sn-metric spaces are said to be spaces with σ -locally finite universal cs-networks.
- (2) \aleph_0 -spaces $\Longrightarrow \aleph$ -spaces, \aleph -spaces \Longleftrightarrow spaces with a σ -locally finite cs-network [2, Theorem 4], \aleph_0 -spaces \Longleftrightarrow spaces with a countable cs^* -network (see [18, Proposition C]).
- (3) For a space, weak base $\Longrightarrow sn$ -network $\Longrightarrow cs$ -network ([10]). So g-metric spaces $\Longrightarrow sn$ -metric spaces $\Longrightarrow \aleph$ -spaces, and g-first countable space $\Longrightarrow sn$ -first countable space. Spaces with countable weak base \Longrightarrow spaces with countable sn-networks $\Longrightarrow \aleph_0$ -spaces.
- (4) An sn-network for a sequential space is a weak base ([10]). Notice that g-first countable \Longrightarrow sequential. g-first countable space \Longleftrightarrow sequential, sn-first countable space. Spaces with countable weak base \Longleftrightarrow sequential, spaces with countable sn-network.
- (5) g-metric space \iff k, sn-metric space (see [9, Theorem 3.15 and Corollary 3.16]). So every k, sn-metric space is sequential.
- **Definition 1.11** ([11]). Let $\{\mathcal{P}_n\}$ be a sequence of covers of a space X.
- (1) $\{\mathcal{P}_n\}$ is a point-star network of X, if $\{st(x,\mathcal{P}_n)\}$ is a network at x for every $x \in X$;
- (2) $\{\mathcal{P}_n\}$ is a point-star sn-network, if $\{st(x,\mathcal{P}_n)\}$ is an sn-network at x for every $x \in X$.
- Remark 1.12. Spaces with a point-star sn-network are sn-first countable.
- **Definition 1.13** ([11]). Let \mathcal{P} be a cover of a space X. \mathcal{P} is a cs^* -cover, if every convergent sequence in X is frequently in P for some $P \in \mathcal{P}$.

2. Main results

At first, we give a characterization of spaces with countable sn-networks. We have known that having countable weak bases, Lindelöf and separable are equivalent for g-metric spaces ([17]), and \aleph_0 , (hereditarily) Lindelöf and hereditarily separable are equivalent for \aleph -spaces ([14], [15]). We have the following analogue for sn-metric spaces.

Theorem 2.1. The following are equivalent for a space X:

- (1) X has a countable sn-network;
- (2) X is an sn-first countable, \aleph_0 -space;
- (3) X is a (hereditarily) Lindelöf, sn-metric space;
- (4) X is a hereditarily separable, sn-metric space;
- (5) X is an ω_1 -compact, sn-metric space.

PROOF: $(1) \Longrightarrow (2)$ follows from Remark 1.10(3).

- (2) \Longrightarrow (3): sn-first countable, \aleph -spaces are sn-metric spaces ([9]), so X is an sn-metric space. \aleph_0 -spaces are hereditarily Lindelöf (see [7, Theorem 3.4]), so X is hereditarily Lindelöf.
- (3) \Longrightarrow (4): sn-metric spaces are \aleph -spaces, and Lindelöf and hereditarily separable are equivalent for \aleph -spaces (see [7, Theorem 3.4]), so X is hereditarily separable.
 - (4) \Longrightarrow (5): It is clear that every Lindelöf space is ω_1 -compact.
- (5) \Longrightarrow (1): Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be an sn-network of X. We can assume \mathcal{P}_n is a closed discrete collection of subsets of X for every $n \in \mathbb{N}$ ([4]). We claim that $|\mathcal{P}_n| \leq \omega$ for every $n \in \mathbb{N}$. If not, there is $n \in \mathbb{N}$ such that $|\mathcal{P}_n| > \omega$. We pick $x_P \in P$ for every $P \in \mathcal{P}_n$. Then $\{x_P : P \in \mathcal{P}_n\}$ is a closed discrete subspace of X. This contradicts the ω_1 -compactness of X. So X has a countable sn-network.

Since perfect mappings inversely preserve sn-metric spaces if the domain spaces have G_{δ} -diagonal ([4]), and inversely preserve Lindelöf spaces, we obtain the following result by the above theorem.

Corollary 2.2. Let $f: X \longrightarrow Y$ be a perfect mapping. If Y has a countable sn-network and X has a G_{δ} -diagonal, then X has a countable sn-network.

We give an example to show that "hereditarily separable" in Theorem 2.1 cannot relax to "separable".

Example 2.3. There is a separable, sn-metric space, which has not any countable sn-network.

PROOF: Let Y be a space in [6, Example 1]. Then Y is a separable, \aleph -space, and is not an \aleph_0 -space, hence Y has not any countable sn-network. Notice that every convergent sequence in Y is a finite subset of Y and Y has a σ -locally finite

cs-network, so Y has a σ -locally finite sn-network. That is, Y is an sn-metric space.

Lemma 2.4. Let $\{\mathcal{P}_n\}$ be a sequence of cs^* -covers of a space X, and S be a sequence converging to a point $x \in X$. Then there is a subsequence L of S such that for every $n \in \mathbb{N}$, there is $P_n \in \mathcal{P}_n$ such that L is eventually in P_n .

PROOF: \mathcal{P}_n is a cs^* -cover of X for every $n \in \mathbb{N}$, so there is $P_n \in \mathcal{P}_n$ such that S is frequently in P_n . Since S is frequently in P_1 , there is a subsequence S_1 of S such that $S_1 \subset P_1$. Put x_{n_1} is the first term of S_1 . Similarly, S_1 is frequently in P_2 , there is a subsequence S_2 of S_1 such that $S_2 \subset P_2$. Put x_{n_2} is the second term of S_2 . By the inductive method, for every $k \in \mathbb{N}$, since S_{k-1} is frequently in P_k , there is a subsequence S_k of S_{k-1} such that $S_k \subset P_k$. Put x_{n_k} is the k-th term of S_k . Let $L = \{x_{n_k} : k \in \mathbb{N}\} \cup \{x\}$. Then L, which is a subsequence of S, is eventually in P_n for every $n \in \mathbb{N}$. In fact, for every $n \in \mathbb{N}$, if k > n, then $x_{n_k} \in S_k \subset S_n \subset P_n$.

Theorem 2.5. The following are equivalent for a space X:

- (1) X is a sequentially-quotient π -image of a metric space;
- (2) X has a point-star sn-network consisting of cs^* -covers;
- (3) X has a point-star network consisting of cs^* -covers.
- PROOF: (1) \Longrightarrow (2). Let $f: M \longrightarrow X$ be a sequentially-quotient π -mapping, (M,d) be a metric space. For every $n \in \mathbb{N}$, put $\mathcal{B}_n = \{B(a,1/n) : a \in M\}$ and $\mathcal{P}_n = f(\mathcal{B}_n)$. Then $\{\mathcal{P}_n\}$ is a sequence of covers of X. Obviously, $\{st(x,\mathcal{P}_n)\}$ satisfies Definition 1.8(b) by the construction of $\{\mathcal{P}_n\}$.
- (i) $\{\mathcal{P}_n\}$ is a point-star network of X: Let $x \in U$ with U open in X. f is a π -mapping, so there is $n \in \mathbb{N}$ such that $d(f^{-1}(x), M f^{-1}(U)) > 2/n$, thus $st(x, \mathcal{P}_n) \subset U$. In fact, if $y \in st(x, \mathcal{P}_n)$, then there is $P = f(B(a, 1/n)) \in \mathcal{P}_n$ for some $a \in M$ such that $x, y \in P$. Let $b, c \in B(a, 1/n)$ such that f(b) = x and f(c) = y. Then $d(c, f^{-1}(x)) \leq d(c, b) < 2/n$, so $c \notin M f^{-1}(U)$, thus $y = f(c) \in U$.
- (ii) \mathcal{P}_n is a cs^* -cover of X for every $n \in \mathbb{N}$: Let S be a sequence in X converging to the point $x \in X$. f is sequentially-quotient, so there is a sequence L in M converging to a point $a \in f^{-1}(x)$ such that $f(L) = S_1$ is a subsequence of S. L is eventually in B(a, 1/n), so $S_1 = f(L)$ is eventually in $P = f(B(a, 1/n)) \in \mathcal{P}_n$. Thus S is frequently in P.
- (iii) $st(x, \mathcal{P}_n)$ is a sequential neighborhood of x for every $x \in X$ and $n \in \mathbb{N}$: Let S be a sequence converging to the point $x \in X$. By the proof in the above (ii), S is frequently in some $P \in \mathcal{P}_n$ and $x \in P$, so S is frequently in $st(x, \mathcal{P}_n)$. By Remark 1.6, $st(x, \mathcal{P}_n)$ is a sequential neighborhood of x.

By the above (i)–(iii), X has a point-star sn-network consisting of cs^* -covers.

- $(2) \Longrightarrow (3)$ is obvious.
- $(3) \Longrightarrow (1)$. Let $\{\mathcal{P}_n\}$ be a point-star network consisting of cs^* -covers of X. We can assume \mathcal{P}_n is a collection of closed subsets of X for every $n \in \mathbb{N}$.

Put $\mathcal{P}_n = \{P_\alpha : \alpha \in A_n\}$ for every $n \in \mathbb{N}$, the topology on A_n is the discrete topology. Put $M = \{a = (\alpha_n) \in \Pi_{n \in \mathbb{N}} A_n : \{P_{\alpha_n}\} \text{ is a network at some } x_a \in X\}$. Then M, which is a subspace of the product space $\Pi_{n \in \mathbb{N}} A_n$, is a metric space with metric d defined as follows:

Let $a = (\alpha_n), b = (\beta_n) \in M$. Then d(a,b) = 0 if a = b, and $d(a,b) = 1/\min\{n \in \mathbb{N} : \alpha_n \neq \beta_n\}$ if $a \neq b$.

Define $f: M \longrightarrow X$ by $f(a) = x_a$ for every $a = (\alpha_n) \in M$, where $\{P_{\alpha_n}\}$ is a network at x_a . It is easy to see that x_a is unique for every $a \in M$ by T_1 -property of X, so f is a function.

- (i) f is onto: Let $x \in X$. For every $n \in \mathbb{N}$, there is $\alpha \in A_n$ such that $x \in P_{\alpha_n}$. For $\{\mathcal{P}_n\}$ is a point-star network of X, $\{P_{\alpha_n}\}$ is a network for x. Put $a = (\alpha_n)$, then f(a) = x.
- (ii) f is continuous: Let $a=(\alpha_n)\in M$, U be a neighborhood of x=f(a). Then there is $k\in\mathbb{N}$ such that $P_{\alpha_k}\subset U$. Put $V=\{b=(\beta_n)\in M:\beta_k=\alpha_k\}$. Then V is open in M containing a and $f(V)\subset P_{\alpha_k}\subset U$, thus f is continuous.
- (iii) f is a π -mapping: Let $x \in U$ with U open in X. For \mathcal{P}_n is a point-star network of X, there is $n \in \mathbb{N}$ such that $st(x,\mathcal{P}_n) \subset U$. Then $d(f^{-1}(x),M-f^{-1}(U)) \geq 1/2n > 0$. In fact, let $a = (\alpha_n) \in M$ such that $d(f^{-1}(x),a) < 1/2n$. Then there is $b = (\beta_n) \in f^{-1}(x)$ such that d(a,b) < 1/n, so $\alpha_k = \beta_k$ if $k \leq n$. Notice that $x \in P_{\beta_n} \in \mathcal{P}_n$, $P_{\alpha_n} = P_{\beta_n}$, so $f(a) \in P_{\alpha_n} = P_{\beta_n} \subset st(x,\mathcal{P}_n) \subset U$, hence $a \in f^{-1}(U)$. Thus $d(f^{-1}(x),a) \geq 1/2n$ if $a \in M f^{-1}(U)$, so $d(f^{-1}(x),M-f^{-1}(U)) \geq 1/2n > 0$.
- (iv) f is sequentially-quotient: Let S be a sequence converging to a point $x \in X$. Notice that $\{\mathcal{P}_n\}$ is a sequence of cs^* -covers of X. By Lemma 2.4, there is a subsequence $L = \{x_k : k \in \mathbb{N}\} \cup \{x\}$ of S such that for every $n \in \mathbb{N}$, there is $\alpha_n \in A_n$ such that L is eventually in P_{α_n} . Put $a = (\alpha_n)$. Since $\{\mathcal{P}_n\}$ is a point-star network, $a \in M$ and f(a) = x. We pick $b_k \in f^{-1}(x_k)$ for every $x_k \in L$ as follows. For every $n \in \mathbb{N}$, if $x_k \in P_{\alpha_n}$, put $\beta_{k_n} = \alpha_n$; if $x_k \notin P_{\alpha_n}$, pick $\alpha_{k_n} \in A_n$ such that $x_k \in P_{\alpha_{k_n}}$, and put $\beta_{k_n} = \alpha_{k_n}$. Put $b_k = (\beta_{k_n}) \in \Pi_{n \in \mathbb{N}} A_n$. Obviously, $b_k \in M$ and $f(b_k) = x_k$. It is easy to prove that $L' = \{b_k : k \in \mathbb{N}\} \cup \{a\}$ is a sequence in M converging to the point a. In fact, let U be open in M containing a. By the definition of Tychonoff-product spaces, we can assume there is $m \in \mathbb{N}$ such that $U = ((\Pi\{\{\alpha_n\} : n \leq m\}) \times (\Pi\{A_n : n > m\})) \cap M$. For every $n \leq m$, L is eventually in P_{α_n} , so there is $k(n) \in \mathbb{N}$ such that $x_k \in P_{\alpha_n}$ if k > k(n), thus $k_n = k_n$. Put $k_0 = \max\{k(1), k(2), \dots, k(m), m\}$. It is easy to see that $k_n \in U$ if $k > k_0$, so k' converges to $k_n \in \mathbb{N}$ such that $k_n \in \mathbb{N}$ is a subsequence of $k_n \in \mathbb{N}$ is sequentially-quotient.

The following lemma belongs to Shou Lin ([8, Proposition 3.7.14(2)]).

Lemma 2.6. Let $f: X \longrightarrow Y$ be a sequentially-quotient mapping, and X be an \aleph_0 -space. Then Y is an \aleph_0 -space.

PROOF: Since X is an \aleph_0 -space, it is easy to prove that X has a countable csnetwork $\mathcal{P}(\text{also see }[8, \text{Proposition } 1.6.7])$. Put $\mathcal{P}' = f(\mathcal{P})$. By Remark 1.10(2), we need only prove that \mathcal{P}' is a cs^* -network of Y.

Let S be a sequence in Y converging to a point $y \in U$ with U open in Y. f is sequentially-quotient, so there is a sequence L in X converging to a point $x \in f^{-1}(y) \subset f^{-1}(U)$ such that f(L) is a subsequence of S. Since \mathcal{P} is a cs-network of X, there exists $P \in \mathcal{P}$ such that L is eventually in P and $P \subset f^{-1}(U)$. Thus f(L) is eventually in $f(P) \subset U$, and so S is frequently in $f(P) \subset U$. Notice that $f(P) \in \mathcal{P}'$. So \mathcal{P}' is a cs^* -network of Y.

Theorem 2.7. The following are equivalent for a space X:

- (1) X has a countable sn-network;
- (2) X is a sequentially-quotient compact image of a separable metric space;
- (3) X is a sequentially-quotient π -image of a separable metric space.

PROOF: $(1) \iff (2)$ from [10], and $(2) \implies (3)$ from Remark 1.4. We only need to prove $(3) \implies (1)$.

Let $f: M \longrightarrow X$ be a sequentially-quotient π -mapping, M be a separable metric space. Then X is sn-first countable from Theorem 2.5 and Remark 1.12. Sequentially-quotient mappings preserve \aleph_0 -spaces by Lemma 2.6, so X is an \aleph_0 -space. Thus X has a countable sn-network by Theorem 2.1.

Every k-space with a countable sn-network is sequential by Remark 1.10(5), so it has a countable weak base. Thus we have the following corollary.

Corollary 2.8. The following are equivalent for a k-space X:

- (1) X has a countable weak base;
- (2) X has a countable sn-network:
- (3) X is a quotient compact image of a separable metric space;
- (4) X is a sequentially-quotient compact image of a separable metric space;
- (5) X is a quotient π -image of a separable metric space;
- (6) X is a sequentially-quotient π -image of a separable metric space.

Acknowledgment. The author would like to thank the referee for his valuable amendments.

References

- [1] Engelking R., General Topology, Polish Scientific Publishers, Warszawa, 1977.
- [2] Foged L., Characterizations of ℵ-spaces, Pacific J. Math. 110 (1984), 59–63.
- [3] Franklin S.P., Spaces in which sequence suffice, Fund. Math. 57 (1965), 107-115.
- [4] Ge Y., On sn-metrizable spaces, Acta Math. Sinica 45 (2002), 355–360 (in Chinese).
- [5] Gruenhage G., Generalized metric spaces, in: K. Kunen and J.E. Vaughan, Eds., Handbook of Set-Theoretic Topology, Amsterdam, North-Holland, pp. 423–501.
- [6] Lin S., On normal separable ℵ-space, Questions Answers Gen. Topology 5 (1987), 249–254.

- [7] Lin S., A survey of the theory of \(\cappa-space\), Questions Answers Gen. Topology 8 (1990), 405-419.
- [8] Lin S., Generalized Metric Spaces and Mappings, Chinese Science Press, Beijing, 1995 (in Chinese).
- [9] Lin S., A note on the Arens' spaces and sequential fan, Topology Appl. 81 (1997), 185–196.
- [10] Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.
- [11] Lin S., Yan P., On sequence-covering compact mappings, Acta Math. Sinica 44 (2001), 175–182 (in Chinese).
- [12] Lin S., Point-star networks and π -mappings, Selected Papers of Chinese Topology Symposium, Chinese Fuzhou Teachers University Publ., Chinese Fuzhou, 2001 (in Chinese).
- [13] Michael E.A., \(\cdot\)0-spaces, J. Math. Mech. **15** (1966), 983–1002.
- [14] O'Meara P., A new class of topological spaces, Univ. of Alberta Dissertation, 1966.
- [15] O'Meara P., On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29 (1971), 183–189.
- [16] Ponomarev V.I., Axioms of countability and continuous mappings, Bull. Pol. Acad. Math. 8 (1960), 127–133 (in Russian).
- [17] Tanaka Y., σ-Hereditarily closure-preserving k-networks and g-metrizability, Proc. Amer. Math. Soc. 112 (1991), 283–290.
- [18] Tanaka Y., Theory of k-networks, Questions Answers Gen. Topology 12 (1994), 139–164.

Department of Mathematics, Suzhou University, Suzhou 215006, P.R.China *E-mail*: geving@pub.sz.jsinfo.net

(Received August 25, 2002, revised December 11, 2003)