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Abstract. The main goal of this paper is to consider the necessary and sufficient conditions
of wave packet systems to be frames in higher dimensions. We establish the necessary
and sufficient conditions for all kinds of wave packet frames of the different operator order
in L2(Rn) with an arbitrary expanding matrix dilations, which include the corresponding
results of wavelet analysis and Gabor theory as the special cases. Our way combines with
some techniques in wavelet analysis and time-frequency analysis.
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1. Introduction

Frames were first introduced by Duffin and Schaeffer [12] in the context of nonharmonic
Fourier series. Outside of signal processing, frames did not seem to generate much interest
until the ground breaking work of Daubechies, Grossmann, and Meyer [11]. Since then,
the theory of frames began to be more widely studied. Traditionally, frames have been
used in signal processing, image processing, data compression, and sampling theory. Re-
cently, frames are also used to mitigate the effect of losses in packet-based communication
systems and hence to improve the robustness of data transmission [3,14], and to design
high-rate constellation with full diversity in multiple-antenna code design [15]. We refer to
the monograph of Daubechies [9] or the research-tutorial [4] for basic properties of frames.
Recently, generalized frames were studied in papers [1] and [16].

An important example about frame is wavelet frame, which is obtained by translating
and dilating a finite family of functions. Wavelets were introduced relatively recently, in
the beginning of the 1980. They attracted considerable interest from the mathematical com-
munity and from members of many diverse disciplines in which wavelets had promising
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applications. Daubechies, Grossman and Meyer [11] combined the theory of the continu-
ous wavelet transform with the theory of frames to define wavelet frames for L2(R). In 1990,
Daubechies [10] obtained the first result on the necessary conditions for affine frames, and
then in 1993, Chui and Shi [6] obtained an improved result. After about ten years, Casazza
and Christensen [2] established a stronger condition which also works for wavelet frame.
Recently, Shi et al. [20, 23, 25] obtained the necessary conditions and sufficient conditions
of wavelet frames.

Another most important concrete realization of frame is Gabor frame. Gabor systems
(Weyl-Heisenberg systems) were first introduced by Gabor [13]. They are generated by
modulations and translations of a finite family of functions. In 2007, Shi and Chen [24]
established some new necessary conditions for Gabor frames. These conditions are also
sufficient for tight frames. In [21], Li, Wu and Zhang presented two new sufficient condi-
tions for Gabor frame via Fourier transform. The conditions they proposed were stated in
terms of the Fourier transforms of the Gabor system’s generating functions, and the condi-
tions were better than that of Daubechies. Furthermore, in [22], Li, Wu and Yang established
a necessary condition and two sufficient conditions ensuring that the shift-invariant system
is a frame for L2(Rn). As some applications, the results are used to obtain some known
conclusions about wavelet frames and Gabor frames.

In [7], authors introduced wave packet systems by applying certain collections of dila-
tions, modulations and translations to the Gaussian function in the study of some classes of
singular integral operators. In [17], authors adopted the same expression to describe any col-
lections of functions which are obtained by applying the same operations to a finite family
of functions. In fact, Gabor systems, wavelet systems and the Fourier transform of wavelet
systems are special cases of wave packet systems. Wave packet systems have recently been
successfully applied to some problems in harmonic analysis and operator theory [18, 19].

In [17], authors examined in detail both the continuous and discrete versions of wave
packet systems by using a unified approach that the authors have developed in their pre-
vious work. They gave a classification of the wave packet system to be a Parseval frame.
They constructed a very general example of wave packet frame. In [5], authors considered
wave packet systems as special cases of generalized shift-invariant systems and presented a
sufficient condition for a wave packet system to form a frame. They also presented certain
natural conditions on the parameters in a wave packet system which exclude the frame prop-
erty. Then, they gave a characterization of the wave packet system to be a Parseval frame.
At last, they provided several examples which the dilations do not have to be expanding and
the modulations do not have to be associated with a lattice. In paper [8], authors introduced
analogues of the notion of Beurling density to describe completeness properties of wave
packet systems via geometric properties of the sets of their parameters. In particular, they
showed necessary conditions for the wave packet system to be a Bessel system. Also, they
obtained the necessary conditions for existence of wave packet frames and provided large
families of new, non-standard examples of wave packet frames with prescribed dimensions.

Except for above three systems mentioned, composite dilation wavelet systems and
shearlet systems have widely studied recently. People can refer to the review in [26] for
further knowledge about all reproducing systems generated by finite functions.

Since both Gabor systems and wavelet systems are some particular examples of wave
packet systems, people ask naturally: how do we construct some examples of wave packet
systems such that they possess simultaneously both Gabor systems and wavelet systems’
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advantages and, however, overcome their shortcomings? In need of applications, how do
we develop the algorithm as classical multiresolution analysis in the setting of the wave
packet systems?

So far as we know, few results are known about these problems. This impels people to
make great efforts solve them.

The main goal of this paper is to consider the necessary conditions and sufficient condi-
tions of wave packet frames in higher dimensions. We establish some necessary conditions
and sufficient conditions for the wave packet frames of the different operator order in L2(Rn)
with matrix dilations of the form (D f )(x) =

√
q f (Ax), where A is an arbitrary expanding

n×n matrix with integer coefficients and q = |detA|. At first, we give a necessary condition
for the wave packet system to be a frame, which is a generalization of classical wavelet
frame and Gabor frame. Of course, our way combines with some techniques in wavelet
analysis and time-frequency analysis. In particular, we use some thoughts of C. K. Chui
and X. L. Shi [6] in classifying the necessary condition for the Gabor frame. Also, we
discuss necessary conditions for other wave packet frames with the different operator or-
der. Secondly, we deduce a sufficient condition for the wave packet system to be a frame
in L2(Rn). Also, we fuse some ways in wavelet analysis and Gabor theory and we mainly
borrow some thoughts in classifying the sufficient conditions of the wavelet frame in papers
[20–23, 25].

Let us now describe the organization of the material that follows. Section 2 is of a
preliminary character: it contains various notations and some facts about the frame and the
wave packet system. In Section 3, we establish some necessary conditions for all kinds of
wave packet frames with the different operator order in L2(Rn). In Section 4, we give a
sufficient condition for the wave packet system to be a frame in L2(Rn).

2. Preliminaries

Let us now establish some basic notations.
Throughout this paper, we use the following notations. Rn and Zn denote the set of

real numbers and the set of integers in n dimensions, respectively. L2(Rn) is the space of
all square-integrable functions in n dimensions, and · and ‖ · ‖ denote the inner product
and norm in L2(Rn), respectively, and l2(Zn) denotes the space of all square-summable
sequences.

For x = (x1,x2, · · · ,xn) ∈ Rn, define |x| =
√

x2
1 + x2

2 + · · ·+ x2
n. We denote by T n the n-

dimensional torus. By Lp(T n) we denote the space of all Zn-periodic functions f (i.e., f is
1-periodic in each variable) such that

∫
T n | f (x)|pdx < +∞.

We use the Fourier transform in the form

(2.1) f̂ (ω) =
∫

Rn
f (x)e−2πix·ω dx,

where · denotes the standard inner product in Rn, and we often omit it when we can under-
stand this from the background. Sometimes, f̂ (ω) is defined by F f .

The Lebesgue measure of a set S ⊆ Rn will be denoted by |S|. When measurable sets X
and Y are equal up to a set of measure zero, we write X=̇Y .

Let En denote the set of all expanding matrices. The expanding matrices mean that all
eigenvalues have magnitude greater than 1. For A ∈ En, we denote by A∗ the transpose of A.
It is obvious that A∗ ∈ En. Let GLn(R) denote the set of all n×n non-singular (or invertible)
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matrices with real entries. For B ∈GLn(R) we denote by B−1 the invertible matrix of B. For
the sake of simplicity, we denote (A∗)−1 by A].

Let us recall the definition of frame.

Definition 2.1. Let H be a separable Hilbert space. A sequence { fi}i∈N of elements of H is
a frame for H if there exist constants 0 < C ≤ D < ∞ such that for all f ∈ H,

(2.2) C‖ f‖2 ≤
∞

∑
i=1
|< f , fi > |2 ≤ D‖ f‖2.

The numbers C,D are called lower and upper frame bounds, respectively (the largest C and
the smallest D for which (2.2) holds are the optimal frame bounds). Those sequences which
satisfy only the upper inequality in (2.2) are called Bessel sequences. A frame is tight if
C = D. If C = D = 1, it is called a Parseval frame.

Let Tf denote the synthesis operator of f = { fi}i∈N , i.e., Tf (c) = ∑i ci fi for each sequence
of scalars c = (ci)i∈N . Then the frame operator Sh = Tf T ∗f (h) associated with { fi}i∈N is
a bounded, invertible, and positive operator mapping of H on itself. This provides the
reconstruction formula

(2.3) h =
∞

∑
i=1

< h, f̃i > fi =
∞

∑
i=1

< h, fi > f̃i,∀ h ∈ H.

where f̃i = S−1 fi. The family { f̃i}i∈N is also a frame for H, called the canonical dual frame
of { fi}i∈N . If {gi}i∈N is any sequence in H which satisfies

(2.4) h =
∞

∑
i=1

< h,gi > fi =
∞

∑
i=1

< h, fi > gi, ∀ h ∈ H,

it is called an alternate dual frame of { fi}i∈N .
In this paper, we will work with three families of unitary operators on L2(Rn). Let

A ∈ En and B,C ∈ GLn(R). The first one consists of the dilation operator DA : L2(Rn)→
L2(Rn) defined by (DA f )(x) = q1/2 f (Ax) with q = |detA|. The second one consists of all
translation operators TBk : L2(Rn)→ L2(Rn), k ∈ Zn, defined by (TBk f )(x) = f (x−Bk). The
third one consists of the modulation operator ECm : L2(Rn)→ L2(Rn), m ∈ Zn, defined by
(ECm f )(x) = e2iπCm·x f (x).

Let P⊂ Z and Q⊂ Rn. Let S = P×Q. Then, we have S⊂ Z×Rn. Again, let {Ap : Ap ∈
P} ⊂ En and B ∈ GLn(R). For the function ψ ∈ L2(Rn), we will consider the wave packet
system Ψ defined by the following

(2.5) Ψ =
{

ψp, ν , m(x) | DApEν TBmψ(x), m ∈ Zn, (p,ν) ∈ S
}

.

Let Ap = A j( j ∈ Z),S = Z×{0}. Then, we obtain the wavelet systems. On the other side,
we can get the Gabor systems when the set {Ap : Ap ∈ P} only consists of the elementary
matrix E. This simple observation already suggests that the wave packet systems provide
greater flexibility than the wavelet systems or the Gabor systems.

By changing the order of the operators, we can also define the following one-to-one
function systems from S×Zn into L2(Rn):

Ψ
1 =

{
ψp, ν , m(x) | DApTBmEν ψ(x), m ∈ Zn, (p,ν) ∈ S

}
,
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Ψ
2 =

{
ψp, ν , m(x) | Eν DApTBmψ(x), m ∈ Zn, (p,ν) ∈ S

}
,

Ψ
3 =

{
ψp, ν , m(x) | Eν TBmDApψ(x), m ∈ Zn, (p,ν) ∈ S

}
,(2.6)

Ψ
4 =

{
ψp, ν , m(x) | TBmDApEν ψ(x), m ∈ Zn, (p,ν) ∈ S

}
,

Ψ
5 =

{
ψp, ν , m(x) | TBmEν DApψ(x), m ∈ Zn, (p,ν) ∈ S

}
.

Then, we will give the definitions of the wave packet frame and the frame wave packet.

Definition 2.2. We say that the wave packet system Ψ defined by (2.5) is a wave packet
frame if it is a frame for L2(Rn). Then, the function ψ is called a frame wave functions.

For other wave packet systems Ψi (1 ≤ i ≤ 5) defined by (2.6), we can define the corre-
sponding wave packet frames and the frame wave packets like Definition 2.2.

In order to prove theorems to be presented in next section, we need the following lemmas.

Lemma 2.1. Suppose that { fk}+∞

k=1 is a family of elements in a Hilbert space H such that
there exist constants 0 < C ≤ D < +∞ satisfying (2.2) for all f belonging to a dense subset
D of H. Then, the same inequalities (2.2) are true for all f ∈ H; that is, { fk}+∞

k=1 is a frame
for H.

For proof of Lemma 2.1, people can refer to the book [9].
Therefore, we will consider the following set of functions:

(2.7) D =
{

f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and f̂ has compact support in R
n \{0}

}
.

The following result is well known, we can find it in [9].

Lemma 2.2. D is a dense subset of L2(Rn).

The following useful facts can be found in paper [5, Lemma 2.2].

Lemma 2.3. Let A ∈ GLn(R), y,z ∈ Rn and f ∈ L2(Rn). Then the following holds:

(1) (Ty f )̂ = Ey f̂ , (Ez f )̂ = Tz f̂ , (DA f )̂ = DA] f̂ ;
(2) TyEz f = e−2πiz·yEzTy f , DAEy f = EA∗yDA f , DATy f = TA−1yDA f ;
(3) (TyEz f )̂ = e−2πiz·yTzE−y f̂ ;
(4) (DATy f )̂(ξ ) = E−A]yDA] f̂ (ξ ) = |detA|− 1

2 f̂ (A]ξ )e−2πiA−1y·ξ .

3. Necessary conditions of wave packet frames

We firstly give some existing results of wavelet frame and Gabor frame in real line R.
Let a and b be the real numbers with a > 1,b > 0,ψ ∈ L2(R), and the system ψ j,k(x) :=

{a
j
2 ψ(a jx− kb)} j,k∈Z be a wavelet system. In 1990, Daubechies[10] proved that if the

system ψ j,k(x) forms a wavelet frame in L2(R) with bounds C and D, then

bC lna≤
∫ +∞

0

|ψ̂(ω)|2

ω
dω ≤ bD lna

and

(3.1) bC lna≤
∫ 0

−∞

|ψ̂(ω)|2

|ω|
dω ≤ Db lna.
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In 1993, C. K. Chui and X. L. Shi [6] established the following improvement if ψ(x) is
a frame wavelet:

(3.2) bC ≤ ∑
j∈Z
|ψ̂(a j

ω)|2 ≤ bD, a.e.ω.

Let a and b be the real numbers with a > 1,b > 0,ψ ∈ L2(R), and the system Gm,k(x) :=
{e2iπamxψ(x−kb)}m,k∈Z be a Gabor system. O. Christensen [4] introduced that if the system
Gm,k(x) forms a Gabor frame in L2(R) with bounds C and D, then

(3.3) bC ≤ ∑
m∈Z
|ψ̂(ω−am)|2 ≤ bD, a.e.ω.

Motivating by the fundament works in (3.2) and (3.3), we will give a necessary condition
of wave packet frame Ψ defined by (2.5) for higher dimension with an arbitrary expansive
matrix dilation in the following.

Theorem 3.1. Suppose that wave packet system {DApEν TBmψ(x)}m∈Zn,(p,ν)∈S defined by
(2.5) is a frame with frame bounds A1 and A2, then we have

(3.4) bA1 ≤ ∑
(p,ν)∈S

|ψ̂(A]
pω−ν)|2 ≤ bA2, a.e.ω,

where b = |detB|.

Proof. Because wave packet system {DApEν TBmψ(x)}m∈Zn,(p,ν)∈S is a frame with frame
bounds A1 and A2, for all f ∈ L2(Rn),we have

(3.5) A1‖ f‖2 ≤ ∑
(p,ν)∈S

∑
m∈Zn
|< f , DApEν TBmψ > |2 ≤ A2‖ f‖2.

Let f̂ ∈Cc(R) and f̂ have compact support.
Let qp = |detAp|. According to Lemma 2.3 and Plancheral theorem, we have

(3.6)

∑
(p,ν)∈S

∑
m∈Zn
|< f , DApEν TBmψ > |2

= ∑
(p,ν)∈S

∑
m∈Zn
|< F f , FDApEν TBmψ > |2

= ∑
(p,ν)∈S

∑
m∈Zn
|< f̂ , DA]

p
Tν E−Bmψ̂ > |2

= ∑
p∈P

q−1
p ∑

ν∈Q
∑

m∈Zn
|
∫

Rn
f̂ (ω)ψ̂(A]

pω−ν)e2πiBm(A]
pω−ν)dω|2

= ∑
p∈P

qp ∑
ν∈Q

∑
m∈Zn
|
∫

Rn
f̂ (A∗p(ω +ν))ψ̂(ω)e2πiBmω dω|2

where we change variables by ω ′ = A]
pω−ν in the last equality.

We assert:

(3.7)

∑
p∈P

qp ∑
ν∈Q

∑
m∈Zn
|
∫

Rn
f̂ (A∗ j

p (ω +ν))ψ̂(ω)e2πiBmω dω|2

= ∑
(p,ν)∈S

qp

b

∫
B]([0,1]n)

| ∑
s∈Zn

f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)|2dω.
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For fixed (p, ν) ∈ S, we have

(3.8)

∫
B]([0,1]n)

∑
s∈Zn
| f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)|dω

= ∑
s∈Zn

∫
B]([0,1]n)

| f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)|dω

= ∑
s∈Zn

∫
B]s+B]([0,1]n)

| f̂ (A∗p(ω +ν)) ¯̂ψ(ω)|dω

=
∫

Rn
| f̂ (A∗p(ω +ν)) ¯̂ψ(ω)|dω

≤ (
∫

Rn
| f̂ (A∗p(ω +ν))|2dω)

1
2 (
∫

Rn
| ¯̂ψ(ω)|2dω)

1
2

< ∞,

where the fourth inequality is obtained by using Cauchy-Schwarz’s inequality.
Thus we can define a function Fp : R→C by

(3.9) Fp(ω) = ∑
s∈Zn

f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s), a.e. ω.

Fp(ω) is B]T n-periodic, and the above argument gives that Fp(ω) ∈ L1(B][0,1]n). In fact,
we even have Fp(ω) ∈ L2(B][0,1]n). To see this, we first see that

(3.10) |Fp(ω)|2 ≤ ∑
s∈Zn
| f̂ (A∗p(ω +B]s+ν))|2 ∑

s∈Zn
|ψ̂(ω +B]s)|2.

Since f̂ ∈Cc(R), the function ω → ∑s∈Zn | f̂ (A∗p(ω +B]s+ν))|2 is bounded. According
to above argument, we easily get Fp(x) ∈ L2(B][0,1]n). Then, according to the definition of
Fp(ω), we have

(3.11)

∫
Rn

f̂ (A∗p(ω +ν))ψ̂(ω)e2πiBmω dω

= ∑
s∈Zn

∫
B]s+B]([0,1]n)

f̂ (A∗p(ω +ν)) ¯̂ψ(ω)e2πiBmω dω

= ∑
s∈Zn

∫
B]([0,1]n)

f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)e2πiBmω dω

=
∫

B]([0,1]n)

(
∑

s∈Zn
f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)

)
e2πiBmω dω

=
∫

B]([0,1]n)
Fp(ω)e2πiBmω dω.

Parseval’s equality shows that

(3.12) ∑
m∈Zn
|
∫

B]([0,1]n)
Fp(ω)e2πiBmω dω|2 =

1
b

∫
B]([0,1]n)

|Fp(ω)|2dω;

Combining (3.11),(3.12) and the definition of Fp(ω), we obtain that
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(3.13)
∑

m∈Zn
|
∫

Rn
f̂ (A∗p(ω +ν))ψ̂(ω)e2πiBmω dω|2

=
1
b

∫
B]([0,1]n)

| ∑
s∈Zn

f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)|2dω.

So, we obtain (3.7). Thus, we complete the assertion.
Choose ω0 ∈ R to be Lebesgue point of the function ∑

(p,ν)∈S
|ψ̂(A]

pω−ν)|2. Letting B(ε)

denote the ball of radius ε > 0 about the origin and ε be sufficiently small, define fε by

(3.14) f̂ε(ω) =
1√
|B(ε)|

χB(ε)(ω−ω0).

Therefore, we obtain

(3.15) ‖ fε‖2 = ‖ f̂ε‖2 = 1.

Thus, we have

(3.16) ∑
(p,ν)∈S

|ψ̂(A]
pω0−ν)|2 = lim

ε→0

∫
|ω−ω0|<ε

1
|B(ε)| ∑

(p,ν)∈S
|ψ̂(A]

pω−ν)|2dω.

From the definition of f , (3.5),(3.6) and (3.7), we have∫
|ω−ω0|<ε

1
|B(ε)| ∑

(p,ν)∈S
|ψ̂(A]

pω−ν)|2dω

= ∑
(p,ν)∈S

∫
B]([0,1]n)

| f̂ε(ω)|2|ψ̂(A]
pω−ν)|2dω

= ∑
(p,ν)∈S

qp

∫
B]([0,1]n)

| ∑
s∈Zn

f̂ε(A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)|2dω(3.17)

= b ∑
(p,ν)∈S

∑
m∈Zn
|< fε , DApEν TBmψ > |2

≤ bA2,

where the third equality is obtained by changing variables ω ′ = A∗p(ω +ν).
Let ε → 0, using the definition of Lebesgue point, we get

(3.18) ∑
(p,ν)∈S

|ψ̂(A]
pω0−ν)|2 ≤ bA2.

According to the definition of Lebesgue point, by the similar technique of Chui and Shi
[6], we obtain

(3.19) ∑
(p,ν)∈S

|ψ̂(A]
pω0−ν)|2 ≥ bA1.

We leave the assertion to readers.
Comparing with (3.17) and (3.18), by changing variables by ω = ω0, we have (3.4).
Therefore, we have completed the proof of Theorem 3.1.
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Remark 3.1. In particular, let A the elementary matrix E in the Theorem 3.1, then, we ob-
tain the necessary condition of the Gabor frames as the following, which is a generalization
of the known result [4] in higher dimensions.

Corollary 3.1. Let B,C ∈ GLn(R). Suppose that the Gabor system {ECkTBmψ(x)}k,m∈Zn is
a frame with frame bounds A1 and A2, then

(3.20) bA1 ≤ ∑
k∈Zn
|ψ̂(ω−Ck)|2 ≤ bA2, a.e.ω,

where b = |detB|.
On the other side, let P = {A j : j ∈ Z,A ∈ GLn(R)} and Q = {0} in the Theorem 3.1,

then, we obtain the necessary condition of the wavelet frames as the following, which is a
generalization of Chui and Shi [6] in higher dimensions.

Corollary 3.2. Let A∈En,B∈GLn(R). Suppose that wavelet system {D j
ATBmψ(x)} j∈Z,m∈Zn

is a frame with frame bounds A1 and A2, then

(3.21) bA1 ≤ ∑
j∈Z
|ψ̂(A∗ j

ω)|2 ≤ bA2, a.e.ω,

where b = |detB|.
In the following, we will discuss necessary conditions for other wave packet frames

Ψi (1≤ i≤ 5) defined by (2.6) with the different operator order.
For wave packet systems Ψ1, from Lemma 2.3, we have

(3.22) DApTBmEν ψ(x) = e−2πiBm·ν DApEν TBmψ(x).

If wave packet system {DApTBmEν ψ(x)}m∈Zn,(p,ν)∈S defined by (2.6) is a frame with frame
bounds A1 and A2, then, from Theorem 3.1 and (3.22), the inequality (3.4) holds.

For wave packet systems Ψ2, from (2) of Lemma 2.3, we have

(3.23) Eν DApTBmψ(x) = DApEA]ν
TBmψ(x).

If wave packet system {DApTBmEν ψ(x)}m∈Zn,(p,ν)∈S defined by (2.6) is a frame with frame
bounds A1 and A2, then, in the same way, the inequality (3.4) holds.

Then, from Theorem 3.1 and (3.23), we have

Corollary 3.3. Suppose that wave packet system {Eν DApTBmψ(x)}m∈Zn,(p,ν)∈S defined by
(2.6) is a frame with frame bounds A1 and A2, then we have

(3.24) bA1 ≤ ∑
(p,ν)∈S

|ψ̂(A]
p(ω−ν))|2 ≤ bA2, a.e.ω,

where b = |detB|.
For wave packet systems Ψi (1≤ 3≤ 5), according to the same reason, we have

(3.25) Eν TBmDApψ(x) = DApEA]ν
TApBmψ(x).

(3.26) TBmEν DApψ(x) = e−2πiApBm·ν DApEA]ν
TApBmψ(x).

(3.27) TBmDApEν ψ(x) = e−2πiApBm·ν DApEAν TApBmψ(x).

The problems turn into being more complicated because all of three equalities are in-
volved in the operator TApBm. We can not obtain directly the results from Theorem 3.1. We
will discuss them in the future.
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4. Sufficient condition of wave packet frames

Not all choices for ψ,Ap,ν and B lead to the wave packet system {DApEν TBmψ(x)}(p,v)∈S, m∈Zn

to be a wave packet frame, even if ψ satisfies (3.4).
In this section, we will derive a sufficient condition for the wave packet system to be a

frame in L2(Rn).

Theorem 4.1. Suppose that wave packet system {DApEν TBmψ(x)}m∈Zn,(p,ν)∈S is defined by
(2.5). Define the constants C1,C2 as the following
(4.1)

C1 :=
1
b

{
inf

ω∈Rn

[
∑

(p,ν)∈S
|ψ̂(A∗pω−ν)|2− ∑

(p,ν)∈S
∑

s∈Zn\{0}
|ψ̂(A]

pω−ν)|| ¯̂ψ(A]
pω−ν +B]s)|

]}
> 0,

(4.2) C2 :=
1
b

{
sup

ω∈Rn

[
∑

(p,ν)∈S
∑

s∈Zn
|ψ̂(A]

pω−ν)|| ¯̂ψ(A]
pω−ν +B]s)|

]}
< ∞,

where b = |detB|. Then, the wave packet system {DApEν TBmψ(x)}m∈Zn,(p,ν)∈S is a frame
with frame bounds C1,C2.

Proof. By Lemma 2.1 and Lemma 2.2, it suffices to show that Theorem 4.1 holds for all
f ∈ D.

To do this, we need to estimate the series

(4.3) ∑
(p,ν)∈S

∑
m∈Zn
|< f , DApEν TBmψ > |2.

Because f ∈ D, the number of k is finite, so (3.6), (3.7) and the Fourier transform inver-
sion formula imply that

∑
(p,ν)∈S

∑
m∈Zn
|< f , DApEν TBmψ > |2

= ∑
(p,ν)∈S

qp

b

∫
B]([0,1]n)

| ∑
s∈Zn

f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)|2dω

= ∑
(p,ν)∈S

qp

b

∫
B]([0,1]n)

∑
s∈Zn

f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)(4.4)

∑
m∈Zn

¯̂f (A∗p(ω +B]m+ν))ψ̂(ω +B]m)dω

= ∑
(p,ν)∈S

qp

b

∫
Rn

f̂ (A∗p(ω +ν))ψ̂(ω)

[
∑

s∈Zn
f̂ (A∗p(ω +B]s+ν)) ¯̂ψ(ω +B]s)

]
dω.

Then, by (4.4) and changing variables ω ′ = A∗pω , we can write

∑
(p,ν)∈S

∑
m∈Zn
|< f , DApEν TBmψ > |2

=
1
b ∑

(p,ν)∈S
∑

s∈Zn

∫
Rn

f̂ (ω +A∗pν)ψ̂(A]
pω) f̂ (ω +A∗pB]s+A∗pν) ¯̂ψ(A]

pω +B]s)dω(4.5)

= Q1 +Q2,
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where,

(4.6) Q1 =
1
b ∑

(p,ν)∈S

∫
Rn
| f̂ (ω +A∗pν)ψ̂(A]

pω)|2dω

and
(4.7)

Q2 =
1
b ∑

(p,ν)∈S
∑

s∈Zn\{0}

∫
Rn

f̂ (ω +A∗pν)ψ̂(A]
pω) f̂ (ω +A∗pB]s+A∗pν) ¯̂ψ(A]

pω +B]s)dω.

Thus, we can rearrange the series Q2 as

Q2 =
1
b ∑

ν∈Q
∑
p∈P

∑
s∈Zn\{0}

∫
Rn

f̂ (ω +A∗pν) f̂ (ω +A∗pν +A∗pB]s)
(

ψ̂(A]
pω) ¯̂ψ(A]

pω +B]s)
)

dω

=
1
b ∑

p∈P
∑

s∈Zn\{0}

∫
Rn

f̂ (ω) f̂ (ω +A∗pB]s)

(
∑

ν∈Q
ψ̂(A]

pω−ν) ¯̂ψ(A]
pω−ν +B]s)

)
dω,

(4.8)

where the second equality is obtained by changing variables ω ′ = ω +A∗pν .
Let

(4.9) ∆s(ω) = ∑
ν∈Q

ψ̂(A]
pω−ν) ¯̂ψ(A]

pω−ν +B]s).

According to Hölder’s inequality and (4.8), we have

|Q2| ≤
1
b ∑

p∈P
∑

s∈Zn\{0}

∫
Rn

(
| ¯̂f (ω)|

√
|∆s(ω)|)(| f̂ (ω +A∗pB]s)|

√
|∆s(ω)|

)
dω

≤ 1
b ∑

p∈P
∑

s∈Zn\{0}

[∫
Rn
| ¯̂f (ω)|2|∆s(ω)|dω

∫
Rn
| f̂ (ω +A∗pB]s)|2|∆s(ω)|dω

] 1
2
.(4.10)

Therefore, by (4.10) and Cauchy-Schwarz’s inequality,

(4.11)

|Q2| ≤
1
b

√
∑
p∈P

∫
Rn
| f̂ (ω)|2 ∑

s∈Zn\{0}
|∆s(ω)|dω

×
√

∑
p∈P

∫
Rn
| f̂ (ω +A∗pB]s)|2 ∑

s∈Zn\{0}
|∆s(ω)|dω.

Combining with (4.11), we get:

(4.12)
∫

Rn
| f̂ (ω +A∗pB]s)|2|∆s(ω)|dω =

∫
Rn
| f̂ (ω)|2|∆s(ω−A∗pB]s)|dω

and

∆s(ω−A∗pB]s) = ∑
ν∈Q

ψ̂(A]
pω−ν−B]s) ¯̂ψ(A]

pω−ν)

= ∑
ν∈Q

ψ̂(A]
pω−ν) ¯̂ψ(A]

pω−ν−B]s)(4.13)

= ∆−s(ω).
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By changing variables s′ =−s, we can obtain we obtain

(4.14) ∑
s∈Zn\{0}

|∆−s(ω)|= ∑
s∈Zn\{0}

|∆s(ω)|.

Thus, we have

|Q2| ≤
1
b ∑

p∈P

∫
Rn
| f̂ (ω)|2 ∑

s∈Zn\{0}
|∆s(ω)|dω

≤ 1
b
‖ f‖2 sup

ω∈R
∑
p∈P

∑
s∈Zn\{0}

|∆s(ω)|.(4.15)

According to the definition of ∆s(ω) and (4.15), we get

|Q2| ≤
1
b
‖ f‖2 sup

ω∈R
∑
p∈P

∑
s∈Zn\{0}

| ∑
ν∈Q

ψ̂(A]
pω−ν) ¯̂ψ(A]

pω−ν +B]s)|

≤ 1
b
‖ f‖2 sup

ω∈R
∑
p∈P

∑
s∈Zn\{0}

∑
p∈P
| ∑

ν∈Q
ψ̂(A]

pω−ν)|| ¯̂ψ(A]
pω−ν +B]s)|.(4.16)

From (4.6), we easily obtain

(4.17) |Q1| ≤
1
b
‖ f‖2 sup

ω∈R
∑

(p,ν)∈S
|ψ̂(A∗pω−ν)|2.

Combining with (4.5), (4.16) and (4.17), we have

∑
(p,ν)∈S

∑
m∈Zn
|< f , DApEν TBmψ > |2

≤ 1
b
‖ f‖2

{
sup

ω∈Rn

[
∑

(p,ν)∈S
∑

s∈Zn
|ψ̂(A]

pω−ν)|| ¯̂ψ(A]
pω−ν +B]s)|

]}
.(4.18)

In the similar way, we can get

∑
(p,ν)∈S

∑
m∈Zn
|< f , DApEν TBmψ > |2

≥ 1
b
‖ f‖2

{
inf

ω∈Rn

[
∑

(p,ν)∈S
|ψ̂(A∗pω−ν)|2

− ∑
(p,ν)∈S

∑
s∈Zn\{0}

|ψ̂(A]
pω−ν)|| ¯̂ψ(A]

pω−ν +B]s)|

]}
.(4.19)

That is to say, if the constants C1,C2 are defined by (4.1) and (4.2), the wave packet system
{DApEν TBmψ(x)}m∈Zn,(p,ν)∈S is a frame with frame bounds C1,C2.

Therefore, we have completed the proof of Theorem 4.1.

In particular, let A the elementary matrix E in the Theorem 4.1, then, we obtain the suf-
ficient condition of the Gabor frames as the following, which is a special case of Corollary
6.3 in [22].
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Corollary 4.1. Let B,C ∈ GLn(R), g(x) ∈ L2(Rn). Define the constants A1,A2 as the fol-
lowing

A1 = inf
ξ

∑
m∈Zn

(
|ĝ(ξ −Bm)|2−∑

k 6=0
|ĝ(ξ −Bm)||ĝ(ξ −Bm+C∗k)|

)
> 0,

A2 =sup
ξ

(
∑

m∈Zn
∑

k∈Zn
|ĝ(ξ−Bm)||ĝ(ξ−Bm+C∗k)|

)
< +∞,

then, Gabor system {ECkTBmg(x)}k,m∈Zn is a frame for L2(Rn) with frame bounds A1 and
A2.

On the other side, let P = {A j : j ∈ Z,A ∈ En,} B = E and Q = {0} in the Theorem 4.1,
then, we obtain the sufficient condition of the wavelet frames as the following, which is the
case of a single generator of Corollary 5.3 in paper [22].

Corollary 4.2. Let ψ(x) ∈ L2(Rn), A ∈ En. Suppose that the constants C,D satisfy

C = inf
ξ

∑
j∈Z

(
|ψ̂
(
(A]) j

ξ

)
|2− ∑

m 6=0
|ψ̂((A]) j

ξ )||ψ̂((A]) j(ξ +m))|
)

> 0,

D = sup
ξ

(
∑

m∈Zn
∑
j∈Z
|ψ̂((A]) j

ξ )||ψ̂((A]) j(ξ +m))|
)

< +∞,

then wavelet system {D j
ATkψ(x) | j ∈ Z, k ∈ Zn} is a frame for L2(Rn) with bounds C and

D.

Remark 4.1. Note that O. Christensen and A. Rahimi [5] presented a sufficient condition
for a wave packet system Ψ1 defined by (2.6) to form a frame by making use of the theory of
generalized shift-invariant systems. In this paper, we devoted to classifying the wave packet
system Ψ defined by (2.5), which includes the corresponding results of wavelet analysis and
Gabor theory as the special cases.

Acknowledgement. The authors would like to express their gratitude to the referee for his
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