Normal Functions and Normal Families

YAN XU
Department of Mathematics, Nanjing Normal University, Nanjing 210097
e-mail: xuyan@njnu.edu.cn

Abstract. In this paper, we prove the following theorem: Let F be a family of holomorphic functions in the unit disc D and let a be a nonzero complex number. If, for any $f \in F$, $f(z) = a \Rightarrow f'(z) = a$, $f'(z) = a \Rightarrow f''(z) = a$, then F is uniformly normal in D, that is, there exists a positive constant M such that $Mzf(z) \leq 1$ for each $f \in F$ and $z \in D$, where M is independently of f. This result improves related results due to [2], [8], and [3].

2000 Mathematics Subject Classification: 30D45

1. Introduction

Let f and g be two meromorphic functions, and let a be a complex number. If $g(z) = a$ whenever $f(z) = a$, we denote it by $f = a \Rightarrow g = a$, and $f = a \Leftrightarrow g = a$ means $f(z) = a$ if and if only if $g(z) = a$.

Let D denote the unit disk in the complex plane C. A function f meromorphic in D is called a normal function, in the sense of [6], if there exist a constant $M(f)$ such that

$$(1 - |z|^2) f^#(z) \leq M(f) \quad \text{for each} \quad z \in D,$$

where

$$f^#(z) = \frac{|f'(z)|}{1 + |f(z)|^2}$$

denotes the spherical derivative.

Let F be a family of meromorphic functions defined in D. F is said to be normal in D (see [9]), in the sense of Montel, if for any sequence $f_n \in F$ there exists a subsequence f_{n_j}, such that f_{n_j} converges spherically, locally and uniformly in D, to a meromorphic function or ∞.
Suppose that \(F \) is a family of functions meromorphic in \(D \) such that each function of \(F \) is a normal function, then, for each function \(f \in F \), there exists a constant \(M(f) \) such that

\[
\left(1 - |z|^2\right)f'\sigma(z) \leq M(f)
\]

for each \(z \in D \). In general, \(M(f) \) is a constant dependent on \(f \), and we can not conclude that \(\{M(f), f \in F\} \) is bounded. If \(\{M(f), f \in F\} \) is bounded, we give the definition as follows

Definition. Let \(F \) be a family of meromorphic functions in the unit disc \(D \). If there exists a positive constant \(M \) such that

\[
\sup \left\{ \left(1 - |z|^2\right)f'\sigma(z) : z \in D, f \in F \right\} < M,
\]

we call the family \(F \) a uniformly normal family in \(D \).

Remark 1. The idea of this definition is suggested by Pang (see [7]).

Remark 2. A well-known result due to Marty (see [4], [9] and [11]) says that a family \(F \) of functions meromorphic in \(D \) is a normal family if and only if for each compact subset \(K \) of \(D \) there exists a constant \(M_K \) such that \(f'\sigma(z) \leq M_K \) for each \(f \in F \) and for each \(z \in K \). Clearly, by Marty’s criterion if \(F \) is a uniformly normal family in \(D \), then \(F \) must be normal in \(D \). However, it is obvious that the converse is not always true.

It is natural to ask: *When is a normal family \(F \) in \(D \) also uniformly normal in \(D \)?* (The question is first introduced by Bergweiler and Pang (see [7]).)

Schwick [10] discovered a connection between normality criteria and sharing values. He proved

Theorem A. Let \(F \) be a family of meromorphic functions in the unit disc \(D \) and let \(a_1, a_2 \) and \(a_3 \) be distinct complex numbers. If, for any \(f \in F \),

\[
f(z) = a_i \iff f'(z) = a_i \quad (i = 1, 2, 3),
\]

then \(F \) is normal in \(D \).

Pang [7] proved that the family \(F \) in Theorem A is also uniformly normal, as follows

Theorem B. Let \(F \) be a family of meromorphic functions in the unit disc \(D \) and let \(a_1, a_2 \) and \(a_3 \) be distinct complex numbers. If, for any \(f \in F \),

\[
f(z) = a_i \iff f'(z) = a_i \quad (i = 1, 2, 3),
\]

then \(F \) is uniformly normal in \(D \).
f(z) = a_i \iff f'(z) = a_i \ (i = 1, 2, 3), \text{ then } F \text{ is uniformly normal in } D, \text{ that is, there exists a positive constant } M \text{ such that }
\left(1 - |z|^2\right)f''(z) \leq M

for each } f \in F \text{ and } z \in D, \text{ where } M \text{ is independent of } f.

Remark 3. In fact, from the proof in [7], we see that Theorem B still remains true if
f(z) = a_i \iff f'(z) = a_i \ (i = 1, 2, 3) \text{ for any } f \in F.

Chen and Hua [2], Pang and Zalcman [8] proved the following normality criterion.

Theorem C. Let } F \text{ be a family of holomorphic functions in the unit disc } D \text{ and let } a \text{ be a nonzero complex number. If, for any } f \in F, f(z) = a \iff f'(z) = a, f'(z) = a \Rightarrow f''(z) = a, \text{ then } F \text{ is normal in } D.

In [3], Fang improved Theorem C as follows

Theorem D. Let } F \text{ be a family of holomorphic functions in the unit disc } D \text{ and let } a \text{ be a nonzero complex number. If, for any } f \in F, f(z) = a \Rightarrow f'(z) = a, f'(z) = a \Rightarrow f''(z) = a, \text{ then } F \text{ is normal in } D.

In this paper, by using a method different from that used in [3], we obtain the following stronger result.

Theorem 1. Let } F \text{ be a family of holomorphic functions in the unit disc } D \text{ and let } a \text{ be a nonzero complex number. If, for any } f \in F, f(z) = a \Rightarrow f'(z) = a, f'(z) = a \Rightarrow f''(z) = a, \text{ then } F \text{ is uniformly normal in } D, \text{ that is, there exists a positive constant } M \text{ such that }
\left(1 - |z|^2\right)f''(z) \leq M

for each } f \in F \text{ and } z \in D, \text{ where } M \text{ is independent of } f.

Remark 4. The following example (see [2] and [3]) shows that } a \neq 0 \text{ cannot be omitted in Theorem 1.

Let } F = \{ f_n(z) = e^{az} : n = 1, 2, 3 \cdots \}, \ D = \{ z : |z| < 1 \}. \text{ Then, for every } f_n \in F, \text{ it is easy to see that } f_n(z) = 0 \Rightarrow f'_n(z) = 0 \Rightarrow f''_n(z) = 0. \text{ However, } f''_n(0) = n/2 \to \infty \text{ as } n \to \infty, \text{ thus } F \text{ is not uniformly normal in } D.

We shall use the standard notations in Nevanlinna theory (see [4], [11]).
2. Lemmas

For convenience, we define

\[
LD(r, f) := c_1 m \left(r, \frac{f'}{f} \right) + c_2 m \left(r, \frac{f''}{f'} \right) + c_3 m \left(r, \frac{f'}{f - a} \right) + c_4 m \left(r, \frac{f''}{f - a} \right), \quad (a \in \mathbb{C})
\]

where \(c_1, c_2, c_3, c_4, c_5\) are constants, which may have different values at different occurrences.

Lemma 1. Let \(f\) be a non-constant holomorphic functions on the unit disc \(D\), and \(a\) be a nonzero complex number. Let

\[
\psi(z) := \psi(f(z)) = \frac{f'(z) + f''(z)}{f(z) - a} - \frac{2 f'''(z)}{f'(z) - a}.
\]

If \(f' = a \Rightarrow f'' = a\) on \(D\), and \(f(0) \neq a, f'(0) \neq a, f''(0) \neq 0, f'(0) \neq f''(0)\) and \(\psi(0) \neq 0\), then

\[
T(r, f) \leq LD(r, f) + O(1) + 3 \log \left| \frac{f(0) - a}{f''(0) - f'(0)} \right| + \log \left| \frac{(f(0) - a)(f''(0) - a)}{f''(0)} \right| + 2 \log \frac{1}{|\psi(0)|}.
\]

Proof. Let \(f(z_0) = a\). By the assumptions we may assume that, near \(z_0\)

\[
f(z) = a + a(z-z_0) + \frac{a}{2}(z-z_0)^2 + b(z-z_0)^3 + O((z-z_0)^4),
\]

where \(b = f^{(3)}(z_0)/6\) is a constant. Then

\[
f'(z) = a + a(z-z_0) + 3b(z-z_0)^2 + O((z-z_0)^3),
\]

\[
f''(z) = a + 3b(z-z_0) + O((z-z_0)^2)
\]
and thus
\[
\frac{f'(z) + f''(z)}{f(z) - a} = \frac{2}{z - z_0} + \frac{6b}{a} + O(z - z_0),
\]
\[
\frac{2f''(z)}{f'(z) - a} = \frac{2}{z - z_0} + \frac{6b}{a} + O(z - z_0).
\]

Hence \(\psi(z_0) = 0\), and
\[
N\left(r, \frac{1}{f - a}\right) \leq N\left(r, \frac{1}{\psi}\right) \leq T\left(r, \psi\right) + \log \frac{1}{|\psi(0)|}
\leq N\left(r, \psi\right) + LD\left(r, f\right) + \log \frac{1}{|\psi(0)|}
= N_0\left(r, \frac{1}{f' - a}\right) + LD\left(r, f\right) + \log \frac{1}{|\psi(0)|},
\]

where \(N_0(r, 1/(f' - a))\) is the counting function for the zeros of \(f' - a\) which are not zeros of \(f - a\). Since \(f = a \Rightarrow f' = a\), form (2.1) we get
\[
2N\left(r, \frac{1}{f - a}\right) \leq N\left(r, \frac{1}{f' - a}\right) + LD\left(r, f\right) + \log \frac{1}{|\psi(0)|}.
\]

On the other hand, by the assumptions we have
\[
N\left(r, \frac{1}{f' - a}\right) \leq N\left(r, \frac{1}{f'}\right) \leq T\left(r, \frac{f''}{f'}\right) + \log \frac{|f'(0)|}{|f''(0) - f'(0)|} + O(1)
= N\left(r, \frac{f'}{f'}\right) + \log \frac{|f'(0)|}{|f''(0) - f'(0)|} + LD\left(r, f\right) + O(1)
= N\left(r, \frac{f'}{f'}\right) + \log \frac{|f'(0)|}{|f''(0) - f'(0)|} + LD\left(r, f\right) + O(1).
\]
Next we need the estimate of $N(r, \frac{1}{f'})$. Since

\[
m\left(r, \frac{1}{f - a} \right) \leq m\left(r, \frac{1}{f} \right) + LD\left(r, f \right)
\]

\[
\leq T\left(r, f' \right) - N\left(r, \frac{1}{f} \right) + LD\left(r, f \right) + \log \frac{1}{f'(0)}
\]

\[
\leq T\left(r, \frac{1}{f - a} \right) - N\left(r, \frac{1}{f} \right) + LD\left(r, f \right) + O(1) + \log \frac{|f(0) - a|}{|f'(0)|}
\]

\[
= m\left(r, \frac{1}{f - a} \right) + N\left(r, \frac{1}{f - a} \right) - N\left(r, \frac{1}{f} \right) + LD\left(r, f \right) + O(1)
\]

\[
+ \log \frac{|f(0) - a|}{|f'(0)|},
\]

we obtain

\[
N\left(r, \frac{1}{f} \right) \leq N\left(r, \frac{1}{f - a} \right) + LD\left(r, f \right) + O(1) + \log \frac{|f(0) - a|}{|f'(0)|}. \quad (2.4)
\]

Thus, from (2.2), (2.3) and (2.4), we get

\[
N\left(r, \frac{1}{f - a} \right) \leq LD\left(r, f \right) + O(1) + \log \frac{|f(0) - a|}{|f'(0)|} + \log \frac{1}{|\psi(0)|}, \quad (2.5)
\]

\[
N\left(r, \frac{1}{f' - a} \right) \leq LD\left(r, f \right) + O(1) + 2 \log \frac{|f(0) - a|}{|f''(0) - f'(0)|} + \log \frac{1}{|\psi(0)|}. \quad (2.6)
\]

Using Milloux’s inequality, we have

\[
T\left(r, f \right) \leq N\left(r, \frac{1}{f - a} \right) + N\left(r, \frac{1}{f' - a} \right) + LD\left(r, f \right) + O(1)
\]

\[
+ \log \frac{|f(0) - a| (f'(0) - a)}{|f''(0)|}.
\]

Substituting (2.5) and (2.6) in the above inequality yields the conclusion.
Lemma 2. (Bureau [1]) Let $b_1, b_2,$ and b_3 be positive numbers and $U(r)$ a nonnegative, increasing and continuous function on an interval $[r_0, R)$, $R < \infty$. If

$$U(r) \leq b_1 + b_2 \log^{+} \frac{1}{\rho - r} + b_3 \log^{+} U(\rho)$$

for any $r_0 < r < \rho < R$, then

$$U(r) \leq B_1 + B_2 \log^{+} \frac{1}{R - r}$$

for $r_0 < r < R$, where B_1 and B_2 depend on $b_i (i = 1, 2, 3)$ only.

Lemma 3. (see Hiong [4]) If $f(z)$ is meromorphic in a disk $|z| < R$ such that $f(0) \neq 0, \infty$, then, for $0 < r < \rho < R$,

$$m \left(r, \frac{f^{(k)}}{f} \right) \leq C_k \left\{ 1 + \log^{+} \log^{+} \frac{1}{|f(0)|} + \log^{+} \frac{1}{r} + \log^{+} \frac{1}{\rho - r} + \log^{+} \rho + \log^{+} T(\rho, f) \right\},$$

where C_k is a constant depending only on k.

The following is the wellknown Zalcman’s lemma [12].

Lemma 4. Let F be a family of functions meromorphic in a domain D. If F is not normal at $z_0 \in D$, then there exist a sequence of points $z_n \in D$, $z_n \to z_0$, a sequence of positive numbers $\rho_n \to 0$, and a sequence of functions $f_n \in F$ such that

$$g_n(\zeta) = f_n(z_n + \rho_n \zeta) \to g(\zeta)$$

locally uniformly with respect to the spherical metric, where g is a non-constant meromorphic function on C.

3. Proof of Theorem 1

Proof. Suppose that F is not uniformly normal in D. Then, we can find $f_n \in F$, $z_n \in D$, such that
\[g_n(z) = f_n z_n + (1 - |z_n|^2) z \]
satisfies
\[g_n'(0) = \left(1 - |z_n|^2\right) f_n'(z_n) \to \infty \]
as \(n \to \infty \). It follows that \(\{ g_n(z) \} \) is not normal at \(z = 0 \). We distinguish two cases:

1. \(g_n = g_n' \) for every \(n \in \mathbb{N} \) then \(g_n(z) = C_n e^z \), which is normal at \(z = 0 \).

2. Consider the case that \(g_n \) and \(g_n' \) are not identical. By Lemma 4, there exist a subsequence \(g_n \) (without loss generality, we may assume \(g_n \)), a sequence \(\eta_n \in D, \eta_n \to 0 \), and a positive sequence \(\rho_n \to 0 \) such that
\[
G_n(\zeta) = g_n(\eta_n + \rho_n \zeta) = f_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta \right)
\]
converges uniformly to a non-constant entire function \(G(\zeta) \) on each compact subset of \(C \). Thus, for any positive integer \(k \),
\[
G_n^{(k)}(\zeta) = \left(1 - |z_n|^2\right)^k \rho_n^k f_n^{(k)} \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta \right). \tag{3.1}
\]
We claim that \(G(\zeta) \) is not a polynomial of degree less than 3. Indeed, if \(G(\zeta) \) is a polynomial, then there exists a point \(\zeta_0 \) such that \(G(\zeta_0) = a \). By Hurwitz’ theorem, there is a sequence \(\zeta_n \to \zeta_0 \) such that
\[
G_n(\zeta_n) = g_n(\eta_n + \rho_n \zeta_n) = f_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_n \right) = a
\]
for \(n \) sufficiently large. It follows from the hypotheses on \(F \) that
\[
f_n' \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_n \right) = f_n' \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_n \right) = a
\]
for \(n \) sufficiently large. On the other hand, by (3.1), we have
\[
G_n(\zeta_n) = \left(1 - |z_n|^2\right)^2 \rho_n^2 f_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_n \right) \to G'(\zeta_0),
\]
\[
G_n''(\zeta_n) = \left(1 - |z_n|^2\right)^2 \rho_n^2 f_n' \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_n \right) \to G''(\zeta_0).
\]
Thus \(G'(\zeta_0) = G''(\zeta_0) = 0 \).

Choose \(\zeta_1 \) with

\[
G(\zeta_1) \neq 0, a; \quad G'(\zeta_1) \neq 0; \quad G''(\zeta_1) \neq 0.
\]

Then

\[
\frac{1}{\rho_1^2 (1 - |z_1|^2)^2} \times \frac{f_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1 \right) - a}{f''_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1 \right) - f''_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1 \right) - a}
\]

\[
\rightarrow \frac{G(\zeta_1)}{G''(\zeta_1)}.
\]

On the other hand, we claim that there are only finitely many \(f_n \) such that \(\psi(f_n) = 0 \).

Indeed, suppose that there is a subsequence \(\{f_n\} \subset \{f_n\} \) such that \(\psi(f_n) = 0 \).

Then

\[
\frac{f_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta \right) + f''_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta \right) - a}{f''_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta \right) - a}
\]

\[
= \frac{2f''_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta \right) - a}{f''_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta \right) - a}.
\]
and thus
\[
\frac{\rho_n \left(1 - |z_n|^2 \right)}{G_n'(\zeta)} + G_n''(\zeta) = \frac{2 \rho_n \left(1 - |z_n|^2 \right)}{G_n'(\zeta) - a \rho_n \left(1 - |z_n|^2 \right)}.
\]

Letting \(j \to \infty \), we get \(G''(\zeta) = 0 \), a contradiction. Then we may assume that \(\psi(f_n) \neq 0 \), for all \(n \). Thus
\[
\rho_n^2 \psi_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1 \right) \to \frac{G''(\zeta)}{G(\zeta) - a},
\]
where \(\psi_n = \psi(f_n) \). So we have
\[
\log \left(\frac{f_n(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1) - a}{f_n'(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1) - f_n'(z_n) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1} \right) \to -\infty,
\]
and
\[
\log \left(\frac{1}{\psi_n(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1)} \right) \to -\infty,
\]
as \(n \to \infty \). For \(n = 1, 2, \ldots \), set
\[
P_n(z) = f_n \left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1 + z \right).
\]
Let \(n \) be sufficiently large. Then \(P_n \) is defined and holomorphic on the disk \(0 < |z| < \frac{1}{2} \), since
\[z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1 \to 0.\]
By (3.2) and (3.3), we have

$$P_n(0) = G_n(\zeta_1) \rightarrow G(\zeta_1) \neq 0, \eta,$$ \hspace{1cm} (3.7)

$$P'_n(0) = \frac{1}{(1 - |z_n|^2) \rho_n} G'_n(\zeta_1) \rightarrow \infty,$$ \hspace{1cm} (3.8)

$$P''_n(0) = \frac{1}{(1 - |z_n|^2)^2 \rho_n^2} G''_n(\zeta_1) \rightarrow \infty,$$ \hspace{1cm} (3.9)

$$\psi(P_n(0)) = \psi_n\left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1\right) \rightarrow \infty.$$ \hspace{1cm} (3.10)

Therefore, by (3.7)–(3.10) we may apply Lemma 1 to $P_n(z)$, and using (3.4), (3.5) and (3.6) we obtain

$$T(r, P_n) \leq LD(r, P_n),$$

for sufficiently large n. Hence by Lemma 2 and Lemma 3, we get

$$T\left(\frac{1}{4}, P_n\right) \leq M,$$

where M is a constant independent of n. It follows that $f_n(z)$ are bounded for sufficiently large n and $|z| < \frac{1}{4}$. But, from

$$\left(1 - |z_n|^2\right)^2 \rho_n^2 f''_n\left(z_n + (1 - |z_n|^2) \eta_n + (1 - |z_n|^2) \rho_n \zeta_1\right) = G''_n(\zeta_1) \rightarrow G''(\zeta_1) \neq 0$$

we know that $f_n(z)$ cannot be bounded in $|z| < \frac{1}{8}$. We arrive at a contradiction. This completes the proof of Theorem 1.

Acknowledgement. Supported in part by NSF of China (Grant 10171047) and NSF of Education Department of Jiangsu Province (03KJB110058).

References

Keywords: Holomorphic function, normal family, normal function, uniformly normal family.