On a Class of Functions whose Derivatives Map the Unit Disc into a Half Plane

DAUD MOHAMAD
Universiti Teknologi MARA, Kampus Bukit Sekilau, 25200 Kuantan, Pahang, Malaysia

Abstract. Let $G(\alpha, \delta)$ denote the class of functions f, $f(0) = f(0) - 1 = 0$ for which $\text{Re} \ e^{ia} f'(z) > \delta$ in $D = \{z : |z| < 1\}$ where $|\alpha| \leq \pi$ and $\cos \alpha - \delta > 0$. We discuss some basic properties of the class including representation theorem, extremals and argument of $G(\alpha, \delta)$.

1. Introduction

We denote $G(\alpha, \delta)$ the class of normalized analytic functions f in the unit disc D where

$$f(z) = z + a_2 z^2 + \cdots + a_n z^n + \cdots$$

satisfying $\text{Re} \ e^{ia} f'(z) > \delta$ where $|\alpha| \leq \pi$ and $\cos \alpha - \delta > 0$.

Many of the classes $G(\alpha, \delta)$ have been studied by several researchers such as MacGregors [3] for $G(0, 0)$, Goel and Mehrok [1] for $G(\alpha, \delta)(\delta \geq 0)$ and Silverman and Silvia [4] for $G(\alpha, 0)$. Writing

$$p(z) = \frac{e^{ia} f'(z) - i \sin \alpha - \delta}{\cos \alpha - \delta} \quad (z \in D),$$

clearly $f \in G(\alpha, \delta)$ if and only if $p \in P$, the class of functions with positive real parts. Solving (1) for $f'(z)$ yields

$$f'(z) = e^{-ia} (Ap(z) + i \sin \alpha + \delta) \quad (z \in D)$$

where $A = \cos \alpha - \delta$.
2. Representation theorem

We obtain the representation theorem for $G(\alpha, \delta)$, sharing the same approach through Herglotz Representation Theorem for functions in P.

Theorem 2.1. Let $f \in g(\alpha, \delta)$. Then for some probability measure μ on the unit circle X,

$$f(z) = \int_X \left[-\psi'_\delta (e^{-ia} - 2\delta)z - 2e^{-ia} A\log(1-zx) \right] d\mu(x). \quad (3)$$

Conversely, if f is given by the above equation, then $f \in G(\alpha, \delta)$.

Proof. For some probability measure μ on the circle X,

$$p \in P \iff p(z) = \int \frac{1 + xz}{1 - xz} d\mu(x).$$

Using (2), we have

$$f'(z) = e^{-ia} \left[A \int \frac{1 + xz}{1 - xz} + i \sin \alpha + \delta \right] d\mu(x)$$

and so

$$f(z) = e^{-ia} \left[\int_0^z \left(\int_X \left(\frac{1 + x\psi}{1 - x\psi} \right) + (i \sin \alpha + \delta) d\mu(x) \right) d\psi \right]$$

$$= \int_0^z \left[\int_X \frac{1 + (e^{-2ia} - 2\delta e^{-ia})x\psi}{1 - x\psi} d\mu(x) \right] d\psi \quad (4)$$

and the desired representation theorem is obtained by reversing the order of integration and integrating with respect to ψ.
We note that the extreme points of $G(\alpha, \delta)$ are the unit point masses

$$f_\alpha(z) = -e^{-iz} (e^{-iz} - 2\delta)z - 2e^{-iz} A\bar{z} \log(1 - xz)$$

with $|x| = 1$ and the derivatives of the extreme points for $G(\alpha, \delta)$ are the point masses

$$f'_\alpha(z) = \frac{1 + (e^{-2iz} - 2\delta xz e^{-iz})}{1 - xz}, |x| = 1.$$

3. Extremal properties

Following Silverman and Silvia [4], we now obtain a coefficient bound for functions in $g(\alpha, \delta)$ and distortion theorems for the derivatives of these functions.

Theorem 3.1. If $f \in G(\alpha, \delta)$, then $|a_n| \leq 2A/n, n = 2, 3, \ldots$ and equality is attained for each n when f is an extreme point of $G(\alpha, \delta)$.

Proof. Using (4) and since $1/(1 - x\psi) = \sum_0^\infty (x\psi)^n$, we can write

$$f(z) = z + 2e^{-iz} A \int \sum_0^\infty x^{n-1} d\mu(x) \frac{z^n}{n}.$$

Now, let $f(z) = z + \sum_{n=2}^\infty a_n z^n$. Then $a_n = \frac{2e^{-iz} A}{n} \int x^{n-1} d\mu(x)$ and the result follows immediately.

Our further result will be based on the following theorem.

Theorem 3.2. Let $f \in G(\alpha, \delta)$. Then f' maps $|z| \leq r$ into the disc D_r with center $-e^{-iz} (e^{-iz} - 2\delta) + (2e^{-iz} A)/(1 - r^2)$ and radius $2Ar/(1 - r^2)$.

Proof. If a and b are complex numbers with $|b| < 1$, and if $0 < r < 1$, the range of the function $(1 + a \omega)/(1 + b \omega)$ ($|\omega| \leq 1$) is the disc with center and radius

$$\frac{1 - abr^2}{1 - |b|^2 r^2}, \quad \frac{|a - b|r}{1 - |b|^2 r^2}.$$
respectively. By taking \(a = (e^{-2ia} - 2\delta e^{-ia})xr \) and \(b = xr \) where \(|x| = 1\), we see that

\[
1 + \frac{(e^{-2ia} - 2\delta e^{-ia})xz}{1 - xz}
\]

maps \(|z| \leq r\) onto \(D_r \). By convexity, any linear combination of functions of this form also maps \(D \) onto \(D_r \). Since for some probability measure \(\mu \), we have

\[
 f'(z) = \int_X \frac{1 + (e^{-2ia} - 2\delta e^{-ia})xz}{1 - xz} \, d\mu(x),
\]

the stated result now follows.

Theorem 3.3. If \(f \in \mathcal{G}(\alpha, \delta) \), then

\[
\frac{1 + r^2(2A(A + \delta) - l) - 2rA}{1 - r^2} \leq \text{Re} f'(z) \leq \frac{1 + r^2(2A(A + \delta) - l) + 2rA}{1 - r^2}
\]

and

\[
\frac{-2Ar(1 + r\sqrt{1 - (A + \delta)^2})}{1 - r^2} \leq \text{Im} f'(z) \leq \frac{2Ar(1 + r\sqrt{1 - (A + \delta)^2})}{1 - r^2}.
\]

All bounds are sharp for any extreme point \(f \) of \(\mathcal{G}(\alpha, \delta) \).

Proof. By Theorem 3.2, we can write

\[
\left| f'(z) - \left(\frac{-e^{-ia}(e^{-ia} - 2\delta)}{1 - r^2} + \frac{2e^{-ia}A}{1 - r^2}\right) \right| \leq \frac{2Ar}{1 - r^2}
\]

so that

\[
\frac{-2Ar}{1 - r^2} \leq \text{Re} \left\{ f'(z) - e^{-ia}(e^{-ia} - 2\delta) - \frac{2e^{-ia}A}{1 - r^2} \right\} \leq \frac{2Ar}{1 - r^2}
\]

and also

\[
\frac{-2Ar}{1 - r^2} \leq \text{Im} \left\{ f'(z) - e^{-ia}(e^{-ia} - 2\delta) - \frac{2e^{-ia}A}{1 - r^2} \right\} \leq \frac{2Ar}{1 - r^2}.
\]

The results are obtained by simplifying the above inequalities.
We note that if \(f \in \mathcal{G}(\alpha, \delta) \), then since \(f_\alpha'(0) = 1 \), we have Re \(f'(z) > 0 \) for \(|z| < \rho \) and some \(\rho \) in \((0,1]\). However if

\[
f_\alpha(z) = \frac{1 + (e^{-2\alpha} - 2\delta e^{-\alpha})z}{1 - z}, \quad (z \in D),
\]

then the left side of inequality (5) is sharp so that

\[
(1-r^2) \text{Re} f_\alpha'(-r) = 1 + r^2(2A(A + \delta) - 1) - 2rA \to 2(\cos \alpha - \delta)(\cos \alpha - 1) \quad (r \to 1)
\]

and the last expression is negative if \(|\alpha| \neq 0 \). This shows that \(\rho \neq 1 \) in general, and it is natural to ask for the best possible value of \(\rho \). We answer this question in the following application of Theorem 3.2.

Theorem 3.4. Let \(f \in \mathcal{G}(\alpha, \delta) \) and put \(\rho = 1/(A + \sqrt{1-A(2\delta + A)}) \). Then

0 < \(\rho \leq 1 \) and \(\text{Re} f'(z) \geq 0 \) for \(r \mid z \mid < \rho \). If \(\rho \leq r \leq 1 \), then \(\text{Re} f_\alpha'(z) < 0 \) for some \(z \) on \(|z| < r \).

Proof. Let \(f \in \mathcal{G}(\alpha, \delta) \) and define \(\rho \) as above. Obviously \(\rho > 0 \) since \(A > 0 \), and

\[
1 - A(2\delta + A) = 1 + \delta^2 - \cos \alpha \geq 0.
\]

Then \(\rho \leq 1 \) is equivalent to \(A + \sqrt{1-A(2\delta + A)} \geq 1 \) and this is obviously true if \(A \geq 1 \). If \(A < 1 \), it is true if \(1 - A(2\delta + A) \geq (1 - A)^2 \), and thus reduces to the trivially true inequality \(\cos \alpha \leq 1 \). So in both cases, \(\rho \leq 1 \).

Now, put \(\sigma(x) = (2A(A + \delta) - 1)x^2 - 2x + 1 \) for real values of \(x \). From (5), we have \((1-r^2)\text{Re} f'(z) \geq \sigma(r) \quad (0 \leq \mid z \mid = r < 1) \) with equality for each \(r \) when \(f = f_\alpha \) and \(z \) is a suitable value on \(|z| = r \). To prove the theorem, it is sufficient to show that \(\sigma(x) \) is positive on \([0, \rho)\) and non-positive on \([\rho, 1]\).

If \(2A(A + \delta) = 1 \), so that \(\sigma(x) \) is linear in \(x \), then \(\rho = 1/(2A) \) and it is clear that \(\sigma(x) \) is positive on \([0, \rho)\) and non-positive on \([\rho, 1]\). When \(2A(A + \delta) \neq 1 \), \(\sigma(x) \) is quadratic and has zeros

\[
x = \frac{A \pm \sqrt{1-A(2\delta + A)}}{2A(A + \delta) - 1} = \frac{1}{A \mp \sqrt{1-A(2\delta + A)}}.
\]

One of the zeros is \(\rho \). Let the other zero be \(\mu \). If \(2A(A + \delta) < 1 \), then \(\mu \rho < 0 \) and (7) shows that \(\mu < 0 \) and \(\rho > 0 \). Since \(\sigma \) is concave, \(\sigma(x) \) is positive on \([0, \rho)\) and
non-positive on $[\rho, 1]$. If $2A(A + \delta) > 1$, then $\mu, \rho > 0$ since $\mu \rho > 0$, $\mu + \rho > 0$. Also $\rho < \mu$ by (5). In this case σ is convex so $\sigma(x)$ is positive on $[0, \rho)$ and non-positive on $[\rho, \mu]$. In particular, since $\sigma(1) = 2A(\cos \alpha - 1) \leq 0$, $\sigma(x)$ is non-positive on $[\rho, 1]$. This completes the proof.

We next obtain a distortion theorem for $G(\alpha, \delta)$.

Theorem 3.5. If $f \in G(\alpha, \delta)$, then

$$|f'(z)| \leq C(r) + \frac{2Ar}{1 - r^2}$$

where

$$C(r) = \sqrt{\frac{4Ar^2}{1 - r^2} \left(\frac{A}{1 - r^2} + \delta \right) + 1}$$

and the bound is sharp for any extreme point f of $G(\alpha, \delta)$.

Proof. Let $\Gamma(r) = -e^{-ia}(e^{-ia} - 2\delta) + \frac{2e^{-ia}A}{1 - r^2}$. By using (6) we have

$$|f'(z)| \leq |\Gamma(r)| + \frac{2Ar}{1 - r^2}$$

$$= C(r) + \frac{2Ar}{1 - r^2}$$

as required.

4. **Argument of $f'(z)$**

We see that if $\delta \geq 0$, then f' is non-zero throughout D, and has continuous argument. But if $\delta < 0$, and if f_0 is any extreme function of $G(\alpha, \delta)$, then at some point of D, f_0' has a zero and hence no argument. So to obtain result for argument of f', we restrict the values of $|z|$ considered in the case $\delta < 0$. We will also use the following property for argument: for a given α in $[-\pi, \pi]$ and as x varies in some interval $[0, c]$, so that $e^{ia} + x \neq 0$, $\phi_\alpha(x)$ is the continuous argument of $e^{ia} + x$, for which $\phi_\alpha(0) = \alpha$. We have
\[\phi_\alpha(x) = \begin{cases}
\tan^{-1}\left(\frac{\sin \alpha}{\cos \alpha + x}\right), & \text{if } x + \cos \alpha > 0 \\
\pi + \tan^{-1}\left(\frac{\sin \alpha}{\cos \alpha + x}\right), & \text{if } x + \cos \alpha < 0 \\
\pi / 2, & \text{if } x + \cos \alpha = 0
\end{cases} \]

when \(0 < \alpha < \pi \), and similar formulae for the case \(-\pi < \alpha < 0 \), \(\alpha = 0, \pm \pi \).

Theorem 4.1. Let \(f \in \mathcal{G}(\alpha, \delta) \), and put \(x(r) = 2Ar^2/(1-r^2) \) (\(0 \leq r < 1 \)). Let

\[r_o = \begin{cases}
1, & \delta \geq 0 \\
\frac{1}{\sqrt{1-4A\delta}}, & \delta < 0.
\end{cases} \]

Then, for \(0 < |z| = r < r_o \), and for suitable determination of argument

\[|\arg f'(z) + \alpha - \phi_\alpha(x(r))| \leq \sin^{-1}\frac{2Ar}{(1-r^2)C(r)} \quad (9) \]

where \(\phi_\alpha(x) \) is defined on \([0, x(r_o)] \) as above and \(C(r) \) is given by (8).

Proof. We restrict the value of \(|z| = r\) by the condition

\[\left| \frac{2A}{1-r^2} + 2\delta - e^{-i\alpha} \right| > \frac{2Ar}{1-r^2} \]

to ensure that \(f'(z) \neq 0 \). Squaring both sides and simplifying, we have

\[\frac{4A\delta}{1-r^2} - 4A\delta + 1 > 0. \]

The inequality holds for all \(r \) in \([0, 1)\) if \(\delta \geq 0 \) and for \(0 \leq r < \frac{1}{\sqrt{1-4\delta}} \) if \(\delta < 0 \). This establishes the restriction on \(|z|\). By using (6) and Theorem 3.5, we deduce that

\[|\arg f'(z) - \arg \Gamma(r)| \leq \sin^{-1}\frac{2Ar}{(1-r^2)C(r)} \quad (10) \]
and also
\[
\arg \Gamma(r) = \arg \left[-e^{-i\alpha} (e^{-i\alpha} - 2\delta) + \frac{2e^{-i\alpha} A}{1 - r^2} \right] \\
= -\alpha + \arg \left[e^{i\alpha} + \frac{2Ar^2}{1 - r^2} \right].
\]

Put \(x(r) = \frac{2Ar^2}{1 - r^2} \), then \(\arg \Gamma(r) = -\alpha + \phi_{\alpha}(x(r)) \) and the desired result follows using (10).

We obtain another result for argument of \(G(\alpha, \delta) \), features \(\arg(f'(z) + k) \) for some real \(k \) that satisfy \(f'(z) + k \neq 0 \) for \(z \in D \) and for all \(f \in G(\alpha, \delta) \). When \(|\alpha| = \pi / 2 \), such a choice is impossible, for if \(f_o \) is an extreme function in \(G(\alpha, \delta) \), then \(f_o'(z) + k \) maps \(D \) onto either \(\text{Im} w > \delta \) or \(\text{Im} w < -\delta \) and since \(\delta < 0 \) both these half planes contain \(0 \). If \(|\alpha| \neq \pi / 2 \), any choice of \(k \) with \(k \cos \alpha + \delta > 0 \) ensures that \(f_o'(z) + k \neq 0 \) for \(z \in D \), \(f \in G(\alpha, \delta) \).

In the statement of the following theorem, for a given \(\alpha \in [-\pi, \pi] \), and as \(x \) varies in some interval \([0, c] \), so that \((k+1)e^{i\alpha} + x \neq 0 \), \(\psi_{\alpha}(\alpha) \) is the continuous argument of \((k+1)e^{i\alpha} + x \) for which \(\psi_{\alpha}(0) \) is principal.

Theorem 4.2. Let \(f \in G(\alpha, \delta) \), where \(|\alpha| \neq \pi / 2 \). Put \(x(r) = 2A/(1 - r^2) \) \((0 \leq r < 1)\) and let \(k \) be a real number such that \(k \cos \alpha + \delta > 0 \). Then

\[
\left| \arg(f'(z) + k) + \alpha - \psi_{\alpha}(x(r)) \right| \leq \sin^{-1} \frac{2Ar}{(1 - r^2)C_1(r)}
\]

where \(\psi_{\alpha}(\alpha) \) is defined on \([0, \infty)\) as above, and

\[
C_1(r) = \sqrt{\frac{4Ar^2}{1 - r^2} \left(\frac{A}{1 - r^2} + k \cos \alpha + \delta \right) + (k+1)^2}. \tag{11}
\]

Proof. Let \(|\alpha| \neq \pi / 2 \), and let \(k \) satisfy \(k \cos \alpha + \delta > 0 \). We have, using (6),

\[
\left| f'(z) + k - (\Gamma(r) + k) \right| \leq \frac{2Ar}{1 - r^2}
\]

where

\[\Gamma(r) = -e^{-i\alpha} (e^{-i\alpha} - 2\delta) + \frac{2Ae^{-i\alpha}}{1-r^2} = 1 + \frac{2Ar^2}{1-r^2} e^{-i\alpha}. \]

Hence

\[|\text{arg}(f'(z) + k) - \text{arg}(\Gamma(r) + k)| \leq \sin^{-1} \frac{2Ar}{(1-r^2)C_1(r)} \] \hspace{1cm} (12)

where \(C_1(r) = |\Gamma(r) + k | \) and is written as in (11). Now

\[\text{arg}(\Gamma(r) + k) = -\alpha + \text{arg} \left[2\delta e^{-i\alpha} + \frac{2A}{1-r^2} + ke^{i\alpha} \right] = -\alpha + \psi_\alpha(x(r)) \]

and the proof is complete by using (12).

References