A note on the compatibility of G_2-structures with symplectic structures

Mohammad Shafiee

Abstract. In this paper we study the relationship between G_2-structures and 8-dimensional symplectic structures. We introduce the notion of compatibility of these structures. It is shown that a 7-manifold with G_2 structure can be embedded into an 8-dimensional symplectic manifold and with additional conditions, this symplectic structure can be chosen compatible with G_2-structure.

Key words: G_2-structure; symplectic structure.

1 Introduction

In the classification of Riemannian holonomy groups due to Berger, there are two exceptional cases: G_2 and $Spin(7)$. In this paper we concern with manifolds of exceptional holonomy group G_2. The compact, simple and simply connected Lie group G_2 can be defined as the group of linear transformations of \mathbb{R}^7 that preserves the Euclidean metric and a vector cross product. A G_2-structure (or an almost G_2-structure) on a 7-dimensional manifold Q is a nondegenerate three form Ω on it. A G_2-structure induces a unique Riemannian metric g on Q. If furthermore $\text{Hol}(g) \subseteq G_2$, then Q is called a G_2-manifold.

The geometry of G_2-manifolds has been studied extensively in several papers ([8],[4],[5],[11]). Akbulut and Salur in [1] studied the relationship between Calabi-Yau geometry and G_2 geometry. By definition a Calabi-Yau manifold is a Kähler manifold X with $c_1(X) = 0$(of course there are some inequivalent definitions). Thus a Calabi-Yau manifold is a special symplectic manifold. On the other hand the relation between symplectic geometry and contact geometry is obvious. So it is natural to expect a connection between G_2 geometry from one hand and symplectic geometry and contact geometry from another hand. In [2] the relationship between G_2 geometry and contact geometry has been studied. The relationship between G_2 geometry and symplectic geometry emerged in [9] for the first time. In [9], by using methods of spin geometry, Fernandez and Gray showed that $T^*Q \times \mathbb{R}$ admits a closed G_2-structure,
Compatibility of G_2-structures with symplectic structures

when Q is an oriented 3-dimensional manifold and in [7], Cho and Salur computed this G_2-structure as $\Omega = Re\Theta + \omega \wedge dt$, where Θ is a certain complex valued 3-form and ω is the standard symplectic form on T^*Q.

In this paper we investigate the connection between symplectic structures and G_2-structures. The paper is organized as follows:

In section 2 we present some preliminaries. In section 3, the compatibility of symplectic structures with G_2-structures and its relation with compatibility of contact structures and G_2-structures, will be study. In particular the following theorems will be proved.

Theorem. Let (Q, α) be a 7-dimensional contact manifold and Ω be a G_2-structure on Q compatible with α. Then Ω is compatible with symplectic form $\omega = d(e^\theta \alpha)$ on $M = Q \times \mathbb{R}$, where θ denotes the coordinate on \mathbb{R}.

Theorem. Let (Q, Ω) be a hypersurface of symplectic manifold (M, ω) and ω is compatible with Ω. If furthermore Q is of contact type then Ω is compatible with contact structure of Q.

In section 4 the existence of symplectic structures on $Q \times \mathbb{R}$ and $Q \times S^1$ is discussed, when Q is a 7-manifold with G_2-structure. The main results of this section are as follows:

Theorem. Let Q be a 7-dimensional manifold with a G_2-structure Ω. Then $M = Q \times \mathbb{R}$ admits an almost symplectic structure compatible with Ω. The same statement is true for $M = Q \times S^1$.

Theorem. Let Q be a connected 7-dimensional manifold with a G_2-structure. Then $M = Q \times \mathbb{R}$ is a symplectic manifold. The same statement is true for $M = Q \times S^1$, when Q is furthermore noncompact.

Theorem. In previous Theorem, if R is a vector field on Q such that $\iota_R \varphi$ is exact, then $Q \times \mathbb{R}$ and $Q \times S^1$ admits a symplectic structure compatible with φ.

2 Preliminaries

2.1 G_2-structures

In this section V is a finite dimensional real vector space and (\cdot, \cdot) is an inner product on V.

Definition 2.1. A skew symmetric bilinear map

\[
(2.1) \quad V \times V \to V : (u, v) \mapsto u \times v
\]

is called a cross product if it satisfies

\[
(u \times v, u) = (u \times v, v) = 0,
\]

\[
|u \times v|^2 = |u|^2|v|^2 - (u, v)^2
\]

for all $u, v \in V$.

It is well known that if V admits a non vanishing cross product, then dimension of V is 3 or 7.
Lemma 2.1. If \(\times \) be a cross product on \(V \), then the map \(\Omega : V \times V \times V \to \mathbb{R} \), defined by
\[
\Omega(u, v, w) = \langle u \times v, w \rangle,
\]
is an alternating 3-form the so called the associative calibration of \(V \).

Definition 2.2. Let \(V \) be a finite dimensional real vector space. A 3-form \(\Omega \in \Lambda^3 V^* \) is called nondegenerate if, \(\iota_v\Omega = 0 \) implies that \(v = 0 \). An inner product on \(V \) is called compatible with \(\Omega \) if the map (2.1) defined by (2.2) is a cross product.

Theorem 2.2. Let \(V \) be a 7-dimensional real vector space and \(\Omega \in \Lambda^3 V^* \). Then:
(i) \(\Omega \) is nondegenerate if and only if it admits a compatible inner product.
(ii) The inner product in (i), if it exists, is uniquely determined by \(\Omega \).
(iii) If \(\Omega_1, \Omega_2 \in \Lambda^3 V^* \) are nondegenerate, then there is an automorphism \(g : V \to V \) such that \(g^*\Omega_2 = \Omega_1 \).
(iv) If \(\Omega \) is compatible with the inner product \(\langle \cdot, \cdot \rangle \), then there is an orientation on \(V \) such that the associated volume form \(d\text{vol} \in \Lambda^7 V^* \) satisfies
\[
\iota_u \Omega \wedge \iota_v \Omega \wedge \Omega = 6 \langle u, v \rangle d\text{vol}
\]
for all \(u, v \in V \).

Example 2.3. Identify \(\mathbb{R}^7 \) with \(\text{Im}O \) of imaginary part of octonions. then for \(u, v \in \mathbb{R}^7 \)
\[
\Omega(u, v) = \text{im} u v
\]
defines a cross product with respect to the standard inner product \(\langle \cdot, \cdot \rangle \) on \(\mathbb{R}^7 \). The associated calibration \(\Omega_0 \) reads
\[
\Omega_0 = e^{123} + e^{145} + e^{167} + e^{167} + e^{246} - e^{275} - e^{347} - e^{356}
\]
where \(e^{ijk} = dx_i \wedge dx_j \wedge dx_k \).

Let \(\langle \cdot, \cdot \rangle \) be an inner product space endowed with a cross product \(\times \) and \(\Omega \) be it’s associated calibration. The sub group of \(\text{Gl}(V) \) that preserve \(\Omega \) is denoted by
\[
G(V, \Omega) = \{ g \in \text{Gl}(V) : g^*\Omega = \Omega \}.
\]
The group \(G(\mathbb{R}^7, \Omega_0) \) will be denoted simply by \(G_2 \). According Theorem 2.4(iii), for an arbitrary nondegenerate 3-form \(\Omega \) on a 7-dimensional vector space \(V \), The group \(G(V, \Omega) \) is isomorphic to \(G_2 \).

Definition 2.4. A nondegenerate 3-form \(\Omega \) on a smooth 7-dimensional manifold \(Q \) is called a \(G_2 \)-structure(or an almost \(G_2 \)-structure).

Remark 2.5. By Theorem 2.4(i, iv) a \(G_2 \) structure \(\Omega \) on \(Q \) induces a unique Riemannian metric and a unique orientation on \(Q \). Thus each tangent space \(T_pQ \) of \(Q \) admits a cross product defined by (2.2).

For more information about \(G_2 \)-structures we refer to [13] and [10].
2.2 Almost symplectic structures and Gromov’s Theorem

Let M be a $2n$-dimensional smooth manifold. A nondegenerate two form ω on M is called an almost symplectic structure. If furthermore ω is closed, then ω is called a symplectic structure on M. It is well known that an almost symplectic manifold (M, ω) admits almost complex structures J tamed by ω, i.e., $\omega(v, Jv) > 0$ for all nonzero v in TM. The space of such almost complex structures is contractible. The following theorem, due to Gromov, states that an almost symplectic structure is homotopic to a symplectic structure. For a proof of this theorem we refer to Theorem 7.34 of [12].

Theorem 2.3. (Gromov’s Theorem) Let M be an open $2n$ dimensional manifold. Let τ be an almost symplectic structure on M and $a \in H^2(M, \mathbb{R})$. There exists a family of almost symplectic forms τ_t on M such that $\tau_0 = \tau$ and τ_1 is a symplectic form that represents the class a.

2.3 Almost contact structures

Let M be an $(2n + 1)$ dimensional smooth manifold. An almost contact structure on M is a triple (J, R, α) consists of a field J of endomorphisms of the tangent bundle, a vector field R and a 1-form α satisfying

1) $\alpha(R) = 1$,
2) $J^2(X) = -X + \alpha(X)R$,

for all X in TM.

Let (J, R, α) be an almost contact structure on M. A Riemannian metric g on M is called a compatible metric if

$$g(Ju, Jv) = g(u, v) - \alpha(u)\alpha(v),$$

for all u, v in TM. An **almost contact metric structure** on M is a quadruple (J, R, α, g), where (J, R, α) is an almost contact symplectic structure and g is a compatible metric.

It is well known that every manifold with an almost contact structure admits a compatible metric. For more details we refer to [3].

3 Compatibility of G_2-structures and symplectic structures

In [2], two kind of compatibility of contact structures and G_2 structures on a manifold, when both of them exist, has been defined. Here we need one of them, the so called A-compatibility, which we simply call it compatible.

Definition 3.1. Let Ω be a G_2-structure on 7-dimensional manifold Q. A contact structure ξ on Q is said to be compatible with Ω if there exist a vector field R on Q, a contact form α for ξ and a nonzero function $f : Q \to \mathbb{R}$ such that $d\alpha = \iota_R \Omega$ and fR is the Reeb vector field of a contact form for ξ.

In this section we consider a hypersurface of a symplectic 8-dimensional manifold, which admits a G_2-structure. We want to know how these two structures are related.
Definition 3.2. Let \((M, \omega)\) be an eight dimensional (almost) symplectic manifold and \(Q\) be a hypersurface of \(M\) with \(G_2\)-structure \(\Omega\). The (almost) symplectic form \(\omega\) is called compatible with \(\Omega\) if there is a vector field \(R : Q \rightarrow TQ\) satisfying

\[
j^*(\omega) = \iota_R \Omega,
\]

where \(j : Q \hookrightarrow M\) is the inclusion map.

The following example explains the motivation of this definition.

Example 3.3. Let \((x_1, ..., x_8)\) denotes the coordinates on \(\mathbb{R}^8\) and consider the symplectic form \(\omega\) on \(\mathbb{R}^8\) as follows:

\[
\omega = dx_1 \wedge dx_8 + dx_2 \wedge dx_3 + dx_4 \wedge dx_5 + dx_6 \wedge dx_7.
\]

Consider \(\mathbb{R}^7\) as a hypersurface in \(\mathbb{R}^8\) with coordinates \((x_1, ..., x_7)\). Let \(\Omega_0\) be the standard \(G_2\)-structure on \(\mathbb{R}^7\). If \(R = \frac{\partial}{\partial x_1}\), we have

\[
\iota_R \Omega_0 = dx_2 \wedge dx_3 + dx_4 \wedge dx_5 + dx_6 \wedge dx_7 = j^*(\omega),
\]

where \(j : \mathbb{R}^7 \rightarrow \mathbb{R}^8\) is defined by \(j(x_1, ..., x_7) = (x_1, ..., x_7, 0)\).

Theorem 3.1. Let \((Q, \alpha)\) be a 7-dimensional contact manifold and \(\Omega\) be a \(G_2\)-structure on \(Q\) compatible with \(\alpha\). Then \(\Omega\) is compatible with symplectic form \(\omega = d(\theta^\alpha)\) on \(M = Q \times \mathbb{R}\), where \(\theta\) denotes the coordinate on \(\mathbb{R}\).

Proof. By assumption, there is a vector field \(R\) on \(Q\) such that \(\iota_R \Omega = d\alpha\). but \(d\alpha = j^*(\omega)\). \(\square\)

Example 3.4. Let \(Q\) be a 3-dimensional oriented Riemannian manifold. Consider the coordinates \((x_1, x_2, x_3, y_1, y_2, y_3)\) on the cotangent bundle \(T^*Q\). Assume \(\omega = -d\lambda_{\text{can}}\) be the standard symplectic form on \(T^*Q\), where \(\lambda_{\text{can}} = \sum y_i dx_i\) is the canonical 1-form on \(T^*Q\). If \(t\) denotes the coordinate on \(\mathbb{R}\), define the 3-form \(\Omega\) on \(T^*Q\) by

\[
\Omega = Re(\Theta) + dt \wedge \omega,
\]

where \(\Theta = (dx_1 + idy_1) \wedge (dx_2 + idy_2 \wedge (dx_3 + idy_3))\) is a complex valued \((3, 0)\) form on \(T^*Q\). In [7] it is shown that \(\Omega\) is a \(G_2\)-structure on \(T^*Q \times \mathbb{R}\). On the other hand it is easy to see that \(\alpha = dt + \lambda_{\text{can}}\) defines a contact structure on \(T^*Q \times \mathbb{R}\) with the Reeb field \(\frac{\partial}{\partial t}\). This contact structure is compatible with \(\Omega\). Thus \(\Omega\) is compatible with symplectic structure \(\omega = d(\theta^\alpha)\) on \(M = T^*Q \times \mathbb{R}^2\).

Definition 3.5. A compact and orientable hypersurface \(Q\) of a symplectic manifold \((M, \omega)\) is called of contact type if there exists a 1-form \(\alpha\) on \(Q\) satisfying

1) \(d\alpha = j^*(\omega)\),
2) \(\alpha(\xi) \neq 0\) for \(0 \neq \xi \in \mathcal{L}_Q\),

where \(j : Q \hookrightarrow M\) is the inclusion map and \(\mathcal{L}_Q\) is the canonical line bundle of \(Q\).

Theorem 3.2. Let \((Q, \Omega)\) be a hypersurface of symplectic manifold \((M, \omega)\) and \(\omega\) is compatible with \(\Omega\). If furthermore \(Q\) is of contact type then \(\Omega\) is compatible with contact structure of \(Q\).
Proof. Since Q is of contact type then there exists a 1-form α on Q such that $d\alpha = j^* (\omega)$ and since ω is compatible with Ω, there is a vector field R on Q such that

$$\iota_R \Omega = j^*(\omega) = d\alpha.$$

Moreover $\iota_R d\alpha = 0$ and since the restriction of $d\alpha$ to $\ker \alpha$ is symplectic, then $\alpha(R) \neq 0$ and so f_R is the Reeb field of α, where $f = \frac{1}{\alpha(R)}$. □

Theorem 3.3. Let (M, ω) be an 8-dimensional symplectic manifold and $Q \subset M$ be a closed (i.e. compact and without boundary) hypersurface of M with a closed G_2-structure Ω. If $H^1(Q) = 0$, then ω is not compatible with Ω.

Proof. Since $j^*(\omega)$ is closed and $H^1(Q) = 0$, then $j^*(\omega) = d\alpha$ for some 1-form α on Q. If ω is compatible with Ω, then there is a vector field R on Q such that $\iota_R \omega = d\alpha$.

Thus $g(R, R)vol_Q = (\iota_R \omega) \wedge (\iota_R \omega) \wedge \omega$ is exact and hence $\int_Q g(R, R) vol_Q = 0$, which is a contradiction. □

4 G_2-structures and existence of symplectic structures

In this section we show that if Q admits a G_2-structure, then $Q \times \mathbb{R}$ and $Q \times S^1$ admit a symplectic structure, and hence Q can be embedded in a symplectic manifold.

Lemma 4.1. Let $(2n+1)$-dimensional manifold Q admits an almost contact structure. Then $Q \times \mathbb{R}$ and $Q \times S^1$ admit an almost complex structure.

Proof. Let (J, R, α) be an almost contact structure on Q and g be a Riemannian compatible metric. Let D be the sub bundle of TQ generated by R and H be the orthogonal complement of D with respect to g. Thus $TQ = H \oplus D \oplus TR$. So, for $X \in T(Q \times \mathbb{R})$, X splits as $X = X_H + bR + a \frac{\partial}{\partial \theta}$, where $X_H \in H$ and θ denotes the coordinate on \mathbb{R}. Define the automorphism $J' : T(Q \times \mathbb{R}) \to T(Q \times \mathbb{R})$ by

$$J'(X_H + bR + a \frac{\partial}{\partial \theta}) = J(X_H) + aR - b \frac{\partial}{\partial \theta}.$$

It is easy to see that J' is an almost complex structure on $Q \times \mathbb{R}$. □

Theorem 4.2. Let Q be a 7-dimensional manifold with a G_2-structure Ω. Then $M = Q \times \mathbb{R}$ admits an almost symplectic structure compatible with Ω. The same statement is true for $M = Q \times S^1$.

Proof. Let g_Ω and \times_Ω denotes, respectively, the Riemannian metric and cross product associative to Ω on Q. Choose a nonzero vector field R on Q with $g_\Omega(R, R) = 1$ and define the 1-form α and endomorphism $J_R : TQ \to TQ$ by

$$\alpha_R(u) = g_\Omega(R, u),$$

$$J_R(u) = R \times_\Omega u.$$
The quadruple \((J_R, R, \alpha_R, g_\Omega)\) defines an almost contact metric structure on \(Q\). Let \(J\) be the almost complex structure induced by \(J_R\) on \(Q \times \mathbb{R}\). Let \(\theta\) denotes the coordinate on \(\mathbb{R}\) and define the Riemannian metric \(g\) and the two form \(\omega\) on \(M = Q \times \mathbb{R}\) by
\[
g = g_\Omega + d\theta^2,
\]
\[
\omega(u, v) = g(Ju, v).
\]
\(\omega\) is an almost symplectic structure on \(M\) and for \(u, v\) in \(TQ\) we have
\[
\omega(u, v) = g(Ju, v) = g(R \times u, v) = \Omega(R, u, v).
\]
Thus \(\omega\) and \(\Omega\) are compatible. \(\square\)

Corollary 4.3. Every connected 7-dimensional manifold with \(G_2\)-structure can be embedded in an 8-dimensional symplectic manifold.

Proof. Let \(Q\) be a 7-dimensional manifold with \(G_2\)-structure. By Theorem 4.2, \(Q \times \mathbb{R}\) and \(Q \times S^1\) admit an almost symplectic structure. Now Gromov’s Theorem follows the assertion. \(\square\)

As in Corollary 4.3 mentioned if \(Q\) admits a \(G_2\)-structure, then \(Q \times \mathbb{R}\) and \(Q \times S^1\) (if \(Q\) is not compact) admit a symplectic structure. It seems to be an open question wether or not every \(G_2\)-structure is compatible with a symplectic structure. We could not find counterexample but also did not see how to prove it.

Definition 4.1. (see [6]) Let \(\varphi\) be a closed \(G_2\)-structure on \(Q\). The vector field \(R\) on \(Q\) is called a \(G_2\)-vector field if the flow of \(R\) preserves the \(G_2\)-structure. Also \(R\) is called Rochesterian if \(\iota_R \varphi\) is an exact form.

Corollary 4.4. Let \((Q, \varphi)\) is a hypersurface of \((M, \omega)\) and \(\omega\) is compatible with \(\varphi\). If \(\varphi\) is closed and \(\iota_R \varphi = j^*(\omega)\), then \(R\) is a \(G_2\)-vector field.

Corollary 4.5. In Theorem 4.2, if \(R\) is a vector field on \(Q\) such that \(\iota_R \varphi\) is exact, then \(Q \times \mathbb{R}\) and \(Q \times S^1\) admits a symplectic structure compatible with \(\varphi\).

In [6] it is shown that there is no Rochesterian vector field on a closed 7-dimensional manifold with a closed \(G_2\)-structure. So in the Corollary 4.4, if \(\omega\) is exact, then \(Q\) is assumed to be noncompact or compact without boundary.

Corollary 4.6. In Theorem 4.2, if \(\varphi\) is closed and \(R\) is a \(G_2\)-vector field, then there exists a symplectic form \(\omega\) on \(Q \times \mathbb{R}\) such that \([\omega] = [\pi^*(\iota_R \varphi)]\), where \(\pi : Q \times \mathbb{R} \to Q\) is the projection map. The same result is true for \(Q \times S^1\).

References

Compatibility of G_2-structures with symplectic structures

Author’s address:

Mohammad Shafiee
Department of Mathematics, Vali-e-Asr University of Rafsanjan,
Rafsanjan, Iran, P.O.Box 7713936417.
E-mail: mshafiee@vru.ac.ir