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Abstract. A 2-plectic Lie group is a Lie group endowed with a 2-plectic
structure which is left invariant. In this paper we provide some inter-
esting examples of 2-plectic Lie groups. Also we study the structure of
the set of Hamiltonian covectors and vectors of a 2-plectic Lie algebra.
Moreover, the existence of i-isotropic and i-Lagrangian subgroups are in-
vestigated. At last we obtain some results about the reduction of some
2-plectic structures.
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1 Introduction

A k-plectic manifold (M,ω) is a smooth manifold M endowed with a (k + 1)-form
ω which is closed and nondegenerate in the sense that ιXω = 0, X ∈ TM , implies
that X = 0. In this case ω is called a k-plectic structure. These structures are
general version of symplectic structures and they naturally appear in the Hamiltonian
formulation of classical fields (see [4]and references therein ). Mathematically, in
spite of general case, symplectic structures are very interesting and so they have been
studied extensively. However, in recent years, 2-plectic structures also have been
considered and these structures also are studied extensively ([1], [8]). An important
class of 2-plectic manifolds are 2-plectic Lie groups. Similar to symplectic case, a
2-plectic Lie group is defined as follows.

Definition 1.1. A 2-plectic Lie group (G,ω) is a Lie group G endowed with a 2-
plectic structure ω which is left invariant.

In contrast to the symplectic case, there are a lot of canonical 2-plectic structures
which are induced by quadratic forms and bialgebra structures (see below). However,
symplectic Lie groups have been studied extensively ([2] and references therein). In
this article we study 2-plectic Lie groups and since for simply connected Lie groups,
the study of 2-plectic Lie groups reduces to the study of 2-plectic Lie algebras, we
will study 2-plectic Lie algebras.
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Definition 1.2. A 2-plectic Lie algebra (g, ω) is a Lie algebra g equipped with a
2-plectic structure ω which is closed, in the sense that ω : g× g× g→ R satisfying

δω(x, y, u, v) = ω([x, y], u, v)− ω([x, u], y, v) + ω([x, v], y, u)

−ω([y, u], x, v) + ω([y, v], x, u)− ω(x, y, [u, v]) = 0,

for all x, y, u, v ∈ g.

The structure of the paper is as follows: In section 2 we provide some important
examples. In section 3 we introduce Hamiltonian covectors and vectors and study
their structures. In section 4 we study the existence of isotropic and Lagrangian
ideals and subalgebras. In the last section we consider the reduction of some 2-plectic
structures.

2 Examples

In this section we provide some important examples of 2-plectic Lie groups.

Definition 2.1. Let (g, [ , ]) be a Lie algebra. A bilinear form B : g×g→ R is called
i) symmetric if B(x, y) = B(y, x), for all x, y ∈ g,
ii) nondegenerate if B(x, y) = 0, for all y ∈ g implies x = 0,
iii) invariant if B([x, y], z) = −B(y, [x, z]), for all x, y, z ∈ g.

If B is a bilinear form on g, which is symmetric, nondegenerate and invariant,
then it is called a quadratic form and the pair (g, B) is called a quadratic Lie algebra.
Quadratic form is a generalization of the Killing form. In general, a Lie algebra may
not have a quadratic form. However, the existence and classifying quadratic forms on
low dimensional Lie algebras has been studied extensively ([7], [6], [3]).
Let (g, B) be a quadratic non Abelian Lie algebra and define the 3-form ω on g by

(2.1) ω(x, y, z) = B([x, y], z), x, y, z ∈ g.

Since B is symmetric and invariant, then ω is totally skew symmetric and closed.
But, in general, ω is not nondegenerate. Indeed, if ω(x, y, z) = 0, for all y, z ∈ g, then
[x, y] = 0, for all y ∈ g. So

Ker ω = {x ∈ g : ιxω = 0} = z(g),

where z(g) is the centre of g. However, ω induces a 2-plectic structure on g = g
z(g) .

Theorem 2.1. The 3-form ω̄ on g, defined by

ω̄(x, y, z) = ω(x, y, z), x, y, z ∈ g(2.2)

is a 2-plectic structure, where x = x+ z(g).
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Proof. Let x2 = x1 + x0, y2 = y1 + y0, z2 = z1 + z0, where x0, y0, z0 ∈ z(g). Then

ω(x2, y2, z2) = ω(x1 + x0, y1 + y0, z1 + z0)

= ω(x1, y1, z1) + ω(x1, y1, z0) + ω(x1, y0, z1)

+ω(x1, y0, z0) + ω(x0, y1, z1) + ω(x0, y1, z0)

+ω(x0, y0, z1) + ω(x0, y0, z0).

Since x0, y0, z0 ∈ z(g) and ω(x, y, z) = B([x, y], z), then all terms of the last equation,
except the first one, are zero. Hence, ω(x2, y2, z2) = ω(x1, y1, z1). This shows that
ω̄ is well-defined. Moreover, if ω̄(x, y, z) = 0, for all y, z ∈ g, then B([x, y], z) =
ω(x, y, z) = 0, for all y, z ∈ g. Thus x ∈ z(g) and hence x = 0. At last, since ω is
closed then ω̄ is closed. �

In the following, we will denote this 2-plectic Lie algebra by (g, ω̄, B). Using this
theorem, we provide some important examples.

Remark 2.2. In this paper all Lie algebras are real. However, if a Lie algebra g is
a complex Lie algebra and B is a complex valued quadratic form on g, then ImB
( imaginary part of B) is a quadratic form on g, when it is considered as a real Lie
algebra. So, in this case we can define ω and ω̄ by ImB on g (as a real Lie algebra).

Example 2.3. Suppose g is a semisimple Lie algebra and B = K is its Killing form.
Since z(g) = 0, then K induces a 2-plectic structure on g itself, defined by (2.1). We
will show this 2-plectic Lie algebra by (g, ω,K).

Example 2.4. Let (g, [ , ]) be a Lie bialgebra, i.e, a Lie algebra g whose dual g∗ also
has a Lie algebra structure { , } which satisfies in a compatibility condition (see [5]).
Then g⊕ g∗ has a Lie algebra structure [ , ]d defined by

[x+ α, y + β]d = [x, y] + {α, β}+ ad∗βx− ad∗xβ − ad∗αy + ad∗yα,

for all x + α, y + β, where adα : g∗ → g∗ is the adjoint operator. The Lie algebra
(g⊕g∗, [ , ]d) is called the double of g and it is denoted by (d, [ , ]d). There is a natural
symmetric and nondegenerate bilinear form B on d defined by

B(x+ α, y + β) = α(y) + β(x), ∀x+ α, y + β.

It is well known that B is also invariant (see [5]). Therefor, (d, B) is a quadratic Lie
algebra and hence (d, ω̄, B) is a 2-plectic Lie algebra. When g is semisimple, d itself
is a 2-plectic Lie algebra ([9]).

Example 2.5. Let (g, [ , ]) be a simple Lie algebra and denote its Killing form by K.
For n > 1, define [ , ]n on gn = g⊕ ...⊕ g by

[x, y]n = (z1, ..., zn), zk =

k−1∑
j=1

[xj , yk−j ],

where x = (x1, ....xn), y = (y1, ..., yn) are in gn. Then (gn, [ , ]n) is a nilpotent Lie
algebra ([7]). Define the bilinear form B on gn by

B(x, y) =

n∑
j=1

K(xj , yn−j+1), x, y ∈ gn.
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The bilinear form B is a quadratic form on gn ([7]). Thus (gn, ω̄, B) is a 2-plectic Lie
algebra.

Example 2.6. Assume that (gi, Bi), i = 1, ..., n, is a quadratic Lie algebra. On
g = g1 ⊕ ...⊕ gn consider the bilinear form B = B1 ⊕ ...⊕Bn defined by

B(x1 + ...+ xn, y1 + ...+ yn) = B1(x1, y1) + ...+Bn(xn, yn).

Obviously, (g, B) is a quadratic Lie algebra. Suppose that gi contains a central
isotropic element zi, i.e, Bi(zi, zi) = 0. Let j be an ideal in g spanned by the elements:
z1 − zn, ..., zn−1 − zn, and j⊥ be the orthogonal complement of j with respect to B.

Put g′ = j⊥

j and define the bilinear form B′ on g′ by

B′(x, y) = B(x, y), x, y ∈ j⊥.

Then (g′, B′) is a quadratic Lie algebra ([6]) which is called amalgamated product of
quadratic Lie algebras. So, (g′, ω̄, B′) is a 2-plectic Lie algebra.

Example 2.7. Consider the set E = {ej = − 1
2 iλj : j = 1, ..., 8} as a basis for the Lie

algebra su(3) where,

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 ,

λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

If {e1, ..., e8} is the corresponding dual basis, then its easy to see that ω = δ(e1 ∧ e8)
is a 2-plectic structure. Since su(3) is simple, then every quadratic form is a scaler
multiple of the Killing form. This fact implies that ω is not induced by a quadratic
form. ω is exact, whereas the 2-plectic structure induced by the Killing form is not
exact.

3 Hamiltonian covectors and vectors

Let (g, ω) be a 2-plectic Lie algebra. A covector α ∈ g∗ is called Hamiltonian if there
is a vector x ∈ g such that

δ(α) = ιxω.(3.1)

The vector x satisfying in (3.1) is also called Hamiltonian and this vector is unique
if it exists. We denote by Ham(g, ω) the space of all Hamiltonian vectors and by
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Ham∗(g, ω) the space of all Hamiltonian covectors. Let α ∈ ∧pg∗ and x ∈ g, we
recall that dxα is defined by

dxα(y1, ..., yp) = α([x, y1], y2, ..., yp) + ...+ α(y1, ..., yp−1, [x, yp]), yi ∈ g.

Suppose α, β ∈ g∗ are Hamiltonian covectors and x, y are Hamiltonian vectors related
to α, β respectively. Define

{α, β} = ιyιxω.(3.2)

Lemma 3.1. Suppose (g, ω) is a 2-plectic Lie algebra and x, y are Hamiltonian vec-
tors. Then

dxω(y, u, v) = 0, ∀u, v ∈ g.(3.3)

Proof. Choose Hamiltonian covectors αx, αy related to x, y, respectively. Using (3.2),
it is easy to see that {αx, αy} = dyαx. So

δ({αx, αy})(u, v) = {αx, αy}([u, v])
= dyαx([u, v])
= ω(x, y, [u, v]).

(3.4)

On the other hand,

δ({αx, αy})(u, v) = δ ◦ (dyαx)(u, v)
= dy ◦ δαx(u, v)
= dy ◦ ιxω(u, v)
= ω(x, [y, u], v) + ω(x, u, [y, v]).

(3.5)

Using (3.4) and (3.5), we have

ω(x, y, [u, v]) = −ω([y, u], x, v) + ω([y, v], x, u).(3.6)

Since δω(x, y, u, v) = 0, then (3.6) proves the statement. �

Theorem 3.2. Suppose x, y are Hamiltonian vectors in (g, ω) and αx, αy are Hamil-
tonian covectors related to x, y respectively. Then [x, y] is a Hamiltonian vector related
to Hamiltonian covector {αx, αy}. In particular, Ham(g, ω) is a Lie subalgebra of g.

Proof. Since x, y are Hamiltonian, then by (3.3) we have

dxω(y, u, v) = 0 = dyω(x, u, v), ∀u, v ∈ g.

So
ω([x, y[, u, v) = −ω(y, [x, u], v)− ω(y, u, [x, v]),

ω([y, x], u, v) = −ω(x, [y, u], v)− ω(x, u, [y, v]).

Hence

0 = ω([x, y], u, v) + ω([y, x], u, v) = −ω(y, [x, u], v)− ω(y, u, [x, v])
−ω(x, [y, u], v)− ω(x, u, [y, v])

= ω([x, u], y, v)− ω([x, v], y, u)
+ω([y, u], x, v)− ω([y, v], x, u).

(3.7)
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Since δω = 0, then

0 = δω(x, y, u, v) = ω([x, y], u, v)− ω([x, u], y, v) + ω([x, v], y, u)

−ω([y, u], x, v) + ω([y, v], x, u)− ω(x, y, [u, v])

= ω([x, y], u, v)− ω(x, y, [u, v]) (by (3.7))

Thus ω([x, y], u, v) = ω(x, y, [u, v]). Now

δ({αx, αy})(u, v) = δ(ιy ◦ ιxω)(u, v)

= ω(x, y, [u, v])

= ω([x, y], u, v)

= ι[x,y]ω(u, v).

�

Definition 3.1. Let (g, ω) be a 2-plectic Lie algebra. A vector x in g is called 2-plectic
if ιxω is closed.

Proposition 3.3. If x and y are 2-plectic, then [x, y] is Hamiltonian.

Proof. Since δ(ιxω)(y, u, v) = 0, then

ω(x, [y, u], v)− ω(x, [y, v], u) + ω(x, [u, v], y) = 0.(3.8)

Similarly, since δ(ιyω)(x, u, v) = 0, then

ω(y, [x, u], v)− ω(y, [x, v], u) + ω(y, [u, v], y) = 0.(3.9)

Adding equations (3.8) and (3.9) implies that

−ω([y, u], x, v) + ω([y, v], x, u)− ω([x, u], y, v) + ω([x, v], y, u) = 0.

Thus δω(x, y, u, v) = 0 implies that ω(x, y, [u, v]) = ω([x, y], u, v). Now, an argument
similar to Theorem 2 proves the statement. �

Let Symp2(g, ω) denote the set of all 2-plectic vectors in g.

Corollary 3.4. Ham(g, ω) is an ideal in Symp2(g, ω).

Theorem 3.5. If the first cohomology group H1(g) is trivial and Ham(g, ω) = g,
then ω is induced by a symmetric, invariant and nondegenerate bilinear form.

Proof. Since Ham(g, ω) = g and H1(g) = 0, then for every x ∈ g there is a unique
αx ∈ g∗ with δαx = ιxω. Thus we define the bilinear form B as follows

B(x, y) =
1

2
(αx(y) + αy(x)), x, y ∈ g.

Obviously, B is symmetric and for x, y, z ∈ g we have

B([x, y], z) = 1
2 (α[x,y](z) + αz([x, y]))

= 1
2 ({αx, αy}(z) + δαz((x, y)))

= 1
2 (ω(x, y, z) + ω(x, y, z))

= ω(x, y, z).

(3.10)
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Similarly, B(y, [x, z]) = −ω(x, y, z). Then

B([x, y], z) +B(x, [y, z]) = 0,

and hence B is invariant. Now, let B(x, y) = 0 for all y ∈ g. Thus αx([y, z]) =
−α[y,z](x) and hence ω(x, y, z) = −ω(y, z, x), for all y, z ∈ g. Since ω is nondegener-
ate, then x = 0. At last (3.10) shows that ω(x, y, z) = B([x, y], z).

�

Corollary 3.6. If (g, ω) is a 2-plectic Lie algebra with Ham(g, ω) = g and H1(g) = 0,
then g has trivial centre.

Proof. Since H1(g) = 0, then g is perfect. Therefore, if g has nontrivial centre, it can
not admit a quadratic form. �

The following result and Theorem 3.1 show that Ham∗(g, ω) is also a Lie algebra.

Proposition 3.7. suppose α, β, γ are Hamiltonian covectors. Then

{α, {β, γ}}+ {β, {γ, α}+ {γ, {α, β}} = 0.

Proof. Assume that x, y, z are Hamiltonian vectors related to α, β, γ respectively.
Then

{α, {β, γ}}(u) = −dx({β, γ})(u)

= {β, γ}([u, x])

= δ({β, γ})(u, x)

= ω([y, z], u, x).

So

({α, {β, γ}}+ {β, {γ, α}+ {γ, {α, β}})(u) = ω([y, z], u, x)

+ω([z, x], u, y)

+ω([x, y], u, z)

= δω(x, y, z, u)

= 0.

In the last equation we use (3.3). �

We end this section by some examples.

Example 3.2. Let g be a semisimple Lie algebra and ω be the 2-plectic structure on
g induced by the Killing form K. Since K induces an isomorphism g → g∗, defined
by x→ K(x, .), then Ham(g, ω) = g and Ham∗(g, ω) = g∗.

Example 3.3. Let (g, B) be a non-Abelian quadratic Lie algebra with centre z and
ω, ω̄ be as in (2.1) and (2.2) respectively. For x ∈ g, assume that αx : g→ R is defined
by αx(y) = B(x, y) and Let

ann(z) = {x ∈ g : αx|z = 0}.
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If x, y ∈ ann(z), then

α[x,y](z) = B([x, y], z) = −B(y, [x, z]) = −αy([x, z]) = 0,

for all z ∈ z. Therefore, ann(z) is a sub Lie algebra of g. For x ∈ ann(z) define
α̃x : g→ R by α̃x(y) = αx(y). If y2 − y1 = y0 ∈ z, then

αx(y2) = αx(y1 + y0)

= αx(y1) + αx(y0)

= αx(y1).

This shows that α̃x is well-defined. Moreover,

δα̃x(y, z) = α̃x([y, z])

= αx([y, z])

= δαx(y, z)

= ω(x, y, z)

= ω̄(x, y, z).

Thus δα̃x = ιxω̄. Hence, for x ∈ ann(z), x is a Hamiltonian vector in g. So, we
can define the map F : ann(z) → Ham(g, ω̄) by F (x) = x. This map is a Lie
homomorphism. We claim that it is also onto. To prove this, let x ∈ Ham(g, ω̄) and
α̃x be a Hamiltonian covector related to x. Define the covector α by α(y) = α̃x(y). It
is trivial that α|z = 0. Furthermore, there is a vector x0 in g such that α(y) = B(x0, y)
and F (x0) = x.

Example 3.4. Suppose ω is the 2-plectic structure of Example 2.5 on su(3). Then
Ham(su(3), ω) = span{e1, e8}.

4 Isotropic and Lagrangian ideals and Lie
subalgebras

Let (V, ω) be a 2-plectic vector space and U ⊆ V be a subspace. Put

U⊥,1 = {v ∈ V : ω(v, u, .) = 0,∀u ∈ U},

U⊥,2 = {v ∈ V : ω(v, u, w) = 0,∀u,w ∈ U}.

For i = 1, 2, the subspace U is called
1) i-isotropic if U ⊆ U⊥,i,
2) i-coisotropic if U⊥,i ⊆ U ,
3) i-Lagrangian if U⊥,i = U .
In this section we study existence of ideals and Lie subalgebras, which are i-isotropic,
i-coisotropic or i-Lagrangian. We start by the following easy result.

Proposition 4.1. Suppose (g, ω) is a 2-plectic Lie algebra and j is an ideal.
1) If j is 1-isotropic, then j is Abelian.
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2) j⊥,1 is a subalgebra of g.
3) If j⊥,1 is an ideal, then [j⊥,1, j] = 0.

4) If j is 2-coisotropic, then j⊥,2 is a sub Lie algebra. In this case, the quotient j⊥,2

j
carries a natural 2-plectic structure.

Proof. These results are easy consequences of the fact that ω is exact. �

Theorem 4.2. Let g be a semisimple Lie algebra and ω be the 2-plectic structure
induced by the Killing form.
1) g has no 2-coisotropic ideal and Lie subalgebra.
2) g has a 1-lagrangian Lie subalgebra.

Proof. 1) Consider the decomposition g = g1 ⊕ g2 ⊕ ... ⊕ gn, where gi, i = 1, ..., n
is a simple Lie algebra. Then every ideal j of g is a direct sum of gis. Suppose
A ⊆ {1, 2, ..., n} and j = ⊕i∈Agi is an ideal. Since [gi, gi] = gi, then j⊥,2 = ⊕i∈Acgi,
where Ac is the complement of A. This shows that j is not 2-coisotropic. Similarly,
every Lie subalgebra L of g is a direct sum of Lie subalgebras Li of gi. So, Let
A be as above and L = ⊕i∈ALi be a Lie subalgebra. Since L ⊆ ⊕i∈Agi, then
L⊥,2 ⊇ (⊕i∈Agi)⊥,2 = ⊕i∈Acgi. So L⊥,2 is not contained in L.
2) If L is a Lie subalgebra of g, then its easy to see that L⊥,1 is the centralizer of L.
So, if L is 1-Lagrangian, then it is Abelian. In particular, every maximal Abelian Lie
subalgebra is 1-Lagrangian. Hence the maximal Abelian Lie subalgebra containing
the Cartan subalgebra is 1-Lagrangian. �

Example 4.1. Suppose L is the Lie subalgebra of su(n) generated by all diagonal
traceless matrices. Then L is a maximal Abelian Lie subalgebra and hence L is 1-
Lagrangian. Similarly, Lie subalgebra L of sl(2n, C) consisting of all matrices of the

form

(
0 A
0 0

)
, with A any n×n matrix, is a maximal Abelian Lie subalgebra. So,

L is a 1-Lagrangian Lie subalgebra with respect to the 2-plectic structure on sl(2n, C)
induced by the imaginary part of the Killing form.

Theorem 4.3. Let (g, ω̄, B) be a 2-plectic Lie algebra, where (g, B) is a quadratic
solvable (or nilpotent) non Abelian Lie algebra. Then g has a 2-coisotropic ideal j

such that j
⊥,2

is also an ideal.

Proof. At first, let j ⊆ g be an arbitrary ideal and j = π−1(j), where π : g→ g is the
canonical projection. Then

j
⊥,2

= {x ∈ g : B(x, y, z) = 0,∀y, z ∈ j}
= {x ∈ g : x ∈ [j, j]⊥}
= π([j, j]⊥),

where, [j, j]⊥ is the orthogonal complement of [j, j] with respect to B. So, j
⊥,2

is an
ideal of g. Now, since g is solvable (res. nilpotent), then g is solvable (res. nilpotent),
and hence it has an ideal with codimension 1. Suppose j is a such ideal. Then j is
2-coisotropic (see [4]). �
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4.1 Invariant 1-Lagrangian subspaces for nilpotent
endomorphisms

Let V be a vector space and ω ∈
∧3

(V ∗). (Here we do not assume that ω is nonde-
generate). Consider the following equation on the set of endomorphisms of V ,

(4.1) ω(ϕ2u, v, w) + ω(u, ϕ2v, w) + ω(u, v, ϕ2w) + ω(ϕu, ϕv,w) = 0.

Lemma 4.4. Let ϕ be an endomorphism on V which satisfies ϕk = 0, for some
k ≥ 1, and it is a solution of the equation (4.1). Then

ω(u, ϕv, ϕk−1w) = 0,

for all u, v and w belong to V .

Proof. Define τml = ω(ϕmu, ϕlv, ϕk−(m+l)w), 0 ≤ m+ l ≤ k. Since ϕ is a solution of
(4.1), the following equations are satisfied,

τ21 + τ03 + τ01 + τ12 = 0,

τ30 + τ12 + τ10 + τ21 = 0,

τ21 + τ01 + τ03 + τ11 = 0,

τ12 + τ10 + τ30 + τ11 = 0,

τ30 + τ10 + τ12 + τ20 = 0,

τ03 + τ01 + τ21 + τ02 = 0.

τ20 + τ02 + τ01 = 0,

τ20 + τ02 + τ10 = 0,

τ20 + τ02 + τ11 = 0,

So τ01 = 0. �

Now, define alternating 3-form α on V by

α(u, v, w) = ω(ϕu, v, w) + ω(u, ϕv, w) + ω(u, v, ϕw).

Proposition 4.5. Let ϕ be an endomorphism on V which satisfies ϕk = 0, for some
k ≥ 1, and it is a solution of the equation (4.1). Then α is degenerate.

Proof. Let z ∈ im(ϕk−1), by Lemma 4.1 we have ω(u, ϕv, z) = 0, for all u, v ∈ V . So
α(z, u, v) = 0, for all u, v ∈ V . �

Proposition 4.6. Let ϕ be an endomorphism on V which satisfies ϕk = 0, for some
k ≥ 1, and it is a solution of the equation (4.1). Then the subspace z⊥,1 is invariant
by ϕ, for all z ∈ im(ϕk−1).

Proof. By Lemma 4.1, it is obvious. �
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Theorem 4.7. Let (V, ω) be a vector space with alternating 3-form. Let ϕ be an
endomorphism on V which satisfies ϕk = 0, for some k ≥ 1, and it is a solution of
the equation (4.1). Then there exists a ϕ-invariant 1-lagrangian subspace of (V, ω).

Proof. We may assume that ϕk−1 6= 0. Now, the statement is proved by induction
on dimension of V . Suppose dim(V )= n and assume that the result is true for
all vector spaces with alternating 3-form and with dimension less than n. Choose
0 6= z ∈ im(ϕk−1). By Proposition 4.3, the subspace z⊥,1 is invariant by ϕ. Let

W = z⊥,1

〈z〉 and ω̄ be the alternating 3-form on W induced by ω. Let endomorphism

ϕ on W induced by ϕ. By induction hypothesis, W has a subspace U which is 1-
lagrangian and ϕ-invariant. The preimage of U in z⊥,1 is 1-lagrangian subspace of V ,
which by construction is invariant by ϕ. �

4.2 Existence of isotropic ideals

Let (g, ω) be a 2-plectic Lie algebra and define the ascending chain Cig and Cig of
ideals in g by

C0g = g, Ci+1g = [g, Cig].

C0g = {0}, Ci+1g = {v|[g, v] ⊆ Cig}.

Then

(4.2) [Cig, Cjg] ⊆ Cj−i−1g.

A Lie algebra of g is called k-step nilpotent if Ckg = 0, for some k ≥ 0 and is called
nilpotency class k if Ckg = {0} and Ck−1g 6= {0}. If g is of nilpotency class k, we
have

(4.3) Ck−ig ⊆ Cig.

Lemma 4.8. Let (g, ω) be a 2-plectic Lie algebra. If Cig ⊆ (Cig)⊥,1, then Ci+1g ⊆
(Ci+1g)⊥,2, for all i ≥ 0.

Proof. Consider z1, z2 ∈ Ci+1g, and w = [u, v] ∈ Ci+1g, where v ∈ Cig. Thus

ω(w, z1, z2) = ω([u, v], z1, z2) = ω([u, z1], v, z2)

+ω([z2, u], v, z1) + ω([z1, v], u, z2) + ω([v, z2], u, z1) + ω([z2, z1], u, v).

Note that [z2, z1], [u, z1] and [u, z2] ∈ Cig, so

ω([z2, z1], u, v) = ω([u, z1], v, z2) = ω([z2, u], v, z1) = 0.

On the other hand, by (4.2), [z1, v] and [z2, v] ∈ Ci+1−i−1g = C0g = 0. So ω([z1, v], u, z2) =
ω([v, z2], u, z1) = 0. Therefor, ω(w, z1, z2) = 0. �

Lemma 4.9.
[g, g] ⊆ z(g)⊥,2.

Proof. Since C0g ⊆ (C0g)⊥,1, so by Lemma 4.2, we have [g, g] ⊆ z(g)⊥,2. �
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Theorem 4.10. Let (g, ω) be a two-step nilpotent 2-plectic Lie algebra. Then the
following hold:
1- The ideal [g, g] is 2-isotropic.
2- (g, ω) has a 2-lagrangian ideal.

Proof. Since [g, g] ⊆ z(g), by Lemma 4.3, we have [g, g] ⊆ [g, g]⊥,2. Any maximally
isotropic subspace a contains [g, g] is a 2-lagrangian ideal. �

Lemma 4.11. Let (g, ω̄, B) be a 2-plectic Lie algebra, where (g, B) is a quadratic non
Abelian Lie algebra. Then Cig ⊆ (Cig)⊥,1 for all i ≥ 0.
In particular [g, g] ⊆ z(g)⊥,1.

Proof. The proof is by induction. Assume that the statement is true for all i ≤ l− 1.
For the induction steps, consider z1 ∈ Clg, w = [u, v] ∈ Clg, where v ∈ Cl−1g, and
where z2 ∈ g.

Thus
ω̄(w, z1, z2) = ω̄([u, v], z1, z2) = ω̄([u, z1], v, z2)

+ω̄([z2, u], v, z1) + ω̄([z1, v], u, z2) + ω̄([v, z2], u, z1) + ω̄([z2, z1], u, v).

Note that [u, z1], [z2, z1] ∈ Cl−1g, so by induction

ω̄([u, z1], v, z2) = ω̄([z2, z1], u, v) = 0.

On the other hand,

[z1, v] ∈ Cl−l+1−1g = C0g = 0.

So
ω̄([z1, v], u, z2) = 0.

Using Jacobi identity, we have

ω̄([z2, u], v, z1) = ω̄([u, z1], z2, v) + ω̄([z1, z2], u, v) = 0,

and
ω̄([u, z1], u, z2) = ω̄([z1, z2], v, u) + ω̄([z1, v], z2, u) = 0.

Therefor, ω̄(w, z1, z2) = 0. �

Theorem 4.12. Let (g, ω̄, B) be a 2-plectic Lie algebra, where (g, B) is a quadratic
non Abelian Lie algebra. Also let g be a two-step nilpotent. Then the following holds:
1- The ideal [g, g] is 1-isotropic.
2- (g, ω̄) has a 1-lagrangian ideal.

Proof. The proof is similar to Theorem 4.4. �

Theorem 4.13. Let (g, ω̄, B) be a 2-plectic Lie algebra, where (g, B) is a quadratic
non Abelian Lie algebra which is of nilpotency class k. Then

Cig is an 1-isotropic ideal of g for all i, with 2i ≥ k.

Proof. Recall from (4.3), that Cig ⊆ Ck−ig if g has nilpotency class k. Since Ck−ig ⊆
Cig, so Cig ⊆ Cig. On other hand, by Lemma 4.4 , [g, g] ⊆ z(g)⊥,1. So Cig is an
1-isotropic ideal. �
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5 Reduction

Let (g, ω) be a 2-plectic Lie algebra and j be a 2-coisotropic ideal in g. Then, according
to Proposition 3 part 4, the 2-plectic structure ω induces a 2-plectic structure ω̃ on

the Lie algebra g̃ = j⊥,2

j .

Definition 5.1. The 2-plectic Lie algebra (g̃, ω̃) is called the 2-plectic reduction of
(g, ω) with respect to the 2-coisotropic ideal j.

In this short section, we obtain some results about 2-plectic reduction.

Theorem 5.1. If (g, ω,K) is a semisimple 2-plectic Lie algebra, then it has no re-
duction.

Proof. This is a consequence of Theorem 4.1. �

Theorem 5.2. Let (g, ω̄, B) be a 2-plectic Lie algebra, where (g, B) is a quadratic
solvable (or nilpotent) non Abelian Lie algebra. Then g has a 2-plectic reduction.

Proof. This is a consequence of Theorem 4.2. �

Of course, in the above theorem we have to note that the dimension of the quotient
space must be greater than 4. Since there is no 2-plectic structure in dimension 4.

Theorem 5.3. Suppose (g1, ω̄1, B1) is a 2-plectic Lie algebra. If ϕ : g1 → g1 is an
anti-symmetric derivation such that z(g) ⊆ Ker ϕ, then (g1, ω̄1, B1) is a symplectic
reduction of a 2-plectic Lie algebra.

Proof. Since (g1, B1) is a quadratic Lie algebra, the Lie algebra (g = g1 ⊕ 〈e〉 ⊕
〈f〉, [ . ], B) is a quadratic Lie algebra, where

[x, y] = [x, y] +B(ϕ(x), y)f, ∀x, y ∈ g1,

[f, g] = 0, [e, x] = ϕ(x), ∀x ∈ g1,

B(e, e) = B(f, f) = B(e, g1) = B(f, g1) = 0,

B(e, f) = 1, B(x, y) = B1(x, y), ∀x, y ∈ g1.

If z(g1) is the centre of g1, then z(g) = z(g1) ⊕ 〈f〉 is the centre of g. Let ω̄ be
the 2-plectic structure induced by B on g

z(g) . Now, it is easy to see that the map

ψ : g1

z(g1)
→ g

z(g) defined by

x+ z(g1) 7→ x+ z(g)

is a monomorphism with ψ∗(ω̄) = ω̄1. �
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