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Abstract. In this paper, we construct a surface family possessing a
Mannheim B pair of a given curve as a geodesic curve. Using the Bishop
frame of the given Mannheim B curves, we present the surface as a linear
combination of this frame and analyse the necessary and sufficient condi-
tion for a given curve such that its Mannheim B pairs is both isoparamet-
ric and geodesic on a parametric surface. Also we analyze the conditions
when the resulting surface is a ruled surface. In addition, developability
along the common Mannheim B -geodesic of the members of surface fam-
ily are discussed. Finally, we present some interesting examples to show
the validity of this study.
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1 Introduction

In differential geometry, there are many important consequences and properties of
curves [20, 10, 21]. Researches follow labours about the curves. In the light of the ex-
isting studies, authors always introduce new curves. One of the most significant curve
on a surface is geodesic curve. Geodesics are important in the relativistic description
of gravity. Einstein’s principle of equivalence tells us that geodesics represent the
paths of freely falling particles in a given space. In architecture, some special curves
have nice properties in terms of structural functionality and manufacturing cost. One
example is planar curves in vertical planes, which can be used as support elements.
Another example is the one of geodesic curves [11] described methods to create pat-
terns of special curves on surfaces, which find applications in design and realization
of freeform architecture. At the corresponding points of associated curves, one of the
Frenet vectors of a curve coincides with one of the Frenet vectors of other curve. This
has attracted the attention of many mathematicians. One of the well-known curves
is the Mannheim curve, where the principal normal line of a curve coincides with the
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binormal line of another curve at the corresponding points of these curves. The first
study of Mannheim curves has been presented by Mannheim in 1878 and has a special
position in the theory of curves [7]. Other studies have been revealed, which introduce
some characterized properties in the Euclidean and Minkowski space [17, 18, 22, 25].
Liu and Wang called these new curves as Mannheim partner curves (see [18] for de-
tails). Later, Mannheim offset the ruled surfaces and dual Mannheim curves have been
defined in [23, 24, 13]. Recently, in [19] Masal and Azak, defined of Mannheim B-pair
according to Bishop frame in the Euclidean 3-space was provided which followed by
the calculitions of the relations between Bishop and Frenet vectors of Mannheim B-
pair. Besides, some theorems and results about the curvatures of Mannheim B-pair
were stated. However, recent researchers focused on the reverse problem: given a
3D curve, find surfaces interpolating the given curve as a special curve, rather than
finding and classifying curves on analytical curved surfaces. The first study related
with this problem was proposed by Wang et al. [28] in Euclidean 3-space. They con-
structed parametric surfaces possessing a given curve as a common geodesic. In this
construction, they obtained the condition on marching-scale functions, coefficients
of the Frenet vectors. Kasap et al. [16] generalized the marching-scale functions of
Wang and obtained a larger family of surfaces. Saffak and Kasap [27, 1] constructed
surfaces with a common null geodesic and null asymptotic. Atalay and Kasap [2, 3]
studied the problem: given a curve (with Bishop frame), how to characterize those
surfaces that posess this curve as a common isogeodesic and Smarandache curve in
Euclidean 3-space. Also they studied the problem: given a curve (with Frenet frame),
how to characterize those surfaces that possess this curve as a common isogeodesic
and Smarandache curve in Euclidean 3-space. Recently, in [5, 4], Atalay studied the
necessary and sufficient condition for a given curve (with Frenet frame) such that
its Mannheim pair is both isoparametric and geodesic (asymptotic) on a paramet-
ric surfaces. Bishop frame, which is also called alternative or parallel frame of the
curves, was introduced by L. R. Bishop in 1975 by means of parallel vector fields,
[6]. Recently, many research papers related to this concept have been treated in the
Euclidean space, see [8, 9]. And, recently, this special frame is extended to study of
canal and tubular surfaces, we refer to [14, 15]. Bishop and Frenet-Serret frames have
a common vector field, namely the tangent vector field of the Frenet-Serret frame.
A practical application of Bishop frames is that they are used in the area of Biology
and Computer Graphics. For example, it may be possible to compute information
about the shope of sequences of DNA using a curve defined by the Bishop frame. The
Bishop frame may also provide a new way to control virtual cameras in computer
animatons, [26]. In this paper, we obtain the necessary and sufficient condition for a
given curve (with Bishop frame) such that its Mannheim B-pair is both isoparametric
and geodesic on a parametric surfaces. Furthermore, we present important results for
ruled surfaces. Finally, we illustrate the method with some examples.

2 Preliminaries

Let be a 3-dimensional Euclidean space provided with the metric given by 〈 , 〉 =
dx21 + dx22 + dx23 where (x1, x2, x3) is a rectangular coordinate system of E3. Recall
that, the norm of a arbitrary vector XεE3 is given by ‖ X ‖=

√
〈X,X〉. Let α =

α(s) : I ⊂ R −→ E3 is an arbitrary curve of arc-length parameter s. The curve
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α is called a unit speed curve if velocity α
′

vector of a satisfies ‖ α′ ‖= 1. Let
{T (s), N(s), B(s)}be the moving Frenet frame along α, Frenet formulas is given by

(2.1)
d

ds

 T (s)
N(s)
B(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T (s)
N(s)
B(s)


where the function κ(s) =

∥∥∥α′′
(s)
∥∥∥ and τ(s) = det(α′(s),α′′(s),α′′′(s))

‖α′(s)× α′′(s)‖ are called the

curvature and torsion of the curve α(s), respectively [10].
The Bishop frame or parallel transport frame is an alternative approach to defin-

ing a moving frame that is well defined even when the curve has vanishing second
derivative. One can express parallel transport of an orthonormal frame along a curve
simply by parallel transporting each component of the frame, [5]. The tangent vector
and any convenient arbitrary basis for the remainder of the frame are used. The
Bishop frame is expressed as

(2.2)
d

ds

 T (s)
N1(s)
N2(s)

 =

 0 k1(s) k2(s)
−k1(s) 0 0
−k2(s) 0 0

 T (s)
N1(s)
N2(s)


Here, we shall call the set {T (s), N1(s), N2(s)} as Bishop Frame and k1(s) and k2(s)
as Bishop curvatures.

Let {T,N,B, κ, τ} and {T,N1, N2, k1, k2} be the Frenet and Bishop apparatus of
regular curve α with the arc-length parameter s respectively. The relations between
Frenet and Bishop frames are given as follows:

(2.3)


T = α′,

N = cos θN1 + sin θN2,

B = − sin θN1 + cos θN2

and

(2.4) τ(s) = −θ′(s), κ(s) =
√
k21 + k22,

where θ(s) = arctan
(
k2
k1

)
, N2 = T ×N1. Furthermore, the relations

(2.5)

{
k1(s) = κ(s) cos θ(s),

k2(s) = κ(s) sin θ(s)

can be written for the Bishop curvatures of the curve α [5].

A curve on a surface is geodesic if and only if the normal vector to the curve is
everywhere parallel to the local normal vector of the surface. Another criterion for a
curve in a surface M to be geodesic is that its geodesic curvature vanishes [10]. An
isoparametric curve α(s) is a curve on a surface ϕ = ϕ(s, v) is that has a constant
s or v-parameter value. In other words, there exist a parameter s0 or v0, such that
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α(s) = ϕ(s, v0) or α(v) = ϕ(s0, v). Given a parametric curve α(s), we call α(s) an
isogeodesic of a surface ϕ if it is both an geodesic and an isoparametric curve on ϕ.

Now, the Mannheim B-curves and some characterizations of these curves will be
introduced.

Definition 2.1. Let C and C∗ be unit speed curves with the arc-length param-
eters of s and s∗ respectively. Denote the Bishop apparatus of C and C∗ by
{T,N1, N2, k1, k2} and {T ∗, N∗1 , N∗2 , k∗1 , k∗2} respectively. If the Bishop vector N1

coincides with the Bishop vector N∗2 at the corresponding points of the curves C and
C∗ then the curve is said to be a Mannheim partner B-curve of C∗ or a (C, C∗) curve
couple is called Mannheim B-pair, see Figure 1 [19].

Figure 1: Mannheim B-curves.

Let γ be the angle between the tangents T and T ∗ of (C , C∗) Mannheim B-pair.
Thus from the definition of Mannheim B-pair the following matrix representation can
be written [19]

(2.6)

 T
N1

N2

 =

 cos γ sin γ 0
0 0 1

− sin γ cos γ 0

 T ∗

N∗
1

N∗
2


Theorem 2.1. The distance between the corresponding points of the Mannheim B-
curves is constant E3, (see for details, [19]).

In other words, the Mannheim B pairs of a curve C(s) with arc length s are given by

(2.7) C∗(s) = C(s) + λN1(s),

where λ is a reel constant and λ 6= 0.

Theorem 2.2. Let (C, C∗) be a Mannheim B-pair in E3. Then the relationships
between the Bishop vectors of C and C∗ is given by

T = µT ∗, N1 = µN∗2 , N2 = µN∗1 ,
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such that

µ =

{
1, for γ = 0

−1, for γ = π,

where γ is the angle between the tangent vectors of C and C∗, (see for details, [19]).

3 Surfaces family with a common Mannheim
B-geodesic curve

Suppose we are given a 3-dimensional parametric curve α(s), L1 ≤ s ≤ L2, in which
s is the arc length and ‖α′′(s)‖ 6= 0. Let α(s), L1 ≤ s ≤ L2, be the Mannheim partner
B-curve of the given curve α(s).

The surface pencil that interpolates α(s) as a common curve is given in the
parametric form as

(3.1) ϕ(s, v) = α(s) +x(s, v)T (s) + y(s, v)N1(s) + z(s, v)N2(s), L1 ≤ s ≤ L2,K1 ≤ v ≤ K2,

where x(s, v), y(s, v) and z(s, v) are C1 functions. The values of the marching-
scale functions x(s, v), y(s, v) and z(s, v) indicate, respectively; the extension-like,
flexion-like and retortion-like effects, by the point unit through the time v, starting
from α(s) and {T (s), N1(s), N2(s)} is the Bishop frame associated with the curve
α(s).

Let α(s) be the Mannheim partner B-curve of the given curve α(s). Then α(s) is
given by

(3.2) α(s) = α(s) + λN1(s)

where λ is a non-zero constant.
Now, let us first examine the problem of finding the surface family with a common

Mannheim B-geodesic curve in the case of γ = 0 from Theorem 2.2.
Using (3.2) and Theorem 2.2, we obtain

(3.3) ϕ(s, v) = α(s) + x(s, v)T (s) + (λ+ z(s, v))N1(s) + y(s, v)N2(s)

Remark 3.1. Observe that choosing different marching-scale functions yields differ-
ent surfaces possessing α(s) as a common curve.

Our goal is to find the necessary and sufficient conditions for which the Mannheim
partner B-curve of the given curve α(s) is isoparametric and geodesic on the surface
ϕ(s, v). Firstly, since α(s) is an isoparametric curve on the surface ϕ(s, v), then there
exists a parameter v0 ε [K1,K2] such that

(3.4) x(s, v0) = y(s, v0) ≡ 0, z(s, v0) = −λ, L1 ≤ s ≤ L2 , K1 ≤ v0 ≤ K2 .

Secondly, since the Mannheim partner B-curve of α(s) is a geodesic curve on the
surface ϕ(s, v), then there exists a parameter v0 ε [K1,K2] such that

(3.5) n(s, v0) ‖ N(s)
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where n(s, v0) is a normal vector ϕ = ϕ(s, v) and N(s) is principal normal vector of
α(s). The normal vector of ϕ = ϕ(s, v) can be written as

n(s, v) =
∂ϕ(s, v)

∂s
× ∂ϕ(s, v)

∂v
.

By using the equations (2.2) and (3.3), we infer that along the curve α the normal
vector can be expressed as:

n(s, v) =

 ∂y(s,v)
∂v

(
x(s, v)k1 + ∂z(s,v)

ds

)
− ∂z(s,v)

∂v

(
−x(s, v)k2 + ∂y(s,v)

ds

) T (s)

+

 ∂x(s,v)
∂v

(
x(s, v)k2 + ∂y(s,v)

ds

)
− ∂y(s,v)

∂v

(
1− k1 (z(s, v) + λ)− k2y(s, v) + ∂x(s,v)

ds

) N1(s)

+

 ∂z(s,v)
∂v

(
1− k1 (z(s, v) + λ)− k2y(s, v) + ∂x(s,v)

ds

)
− ∂x(s,v)

∂v

(
x(s, v)k1 + ∂z(s,v)

ds

) N2(s).

Thus,

(3.6) n(s, v0) = ϕ1(s, v0)T (s) + ϕ2(s, v0)N1(s) + ϕ3(s, v0)N2(s)

where

(3.7)


ϕ1(s, v0) = 0

ϕ2(s, v0) = −∂y∂v (s, v0)

ϕ3(s, v0) = ∂z
∂v (s, v0)

Also, from equation (2.3), we obtain

n(s, v0) = ϕ1(s, v0)T (s) + (cos θϕ2(s, v0) + sin θϕ3(s, v0))N(s)

+ (− sin θϕ2(s, v0) + cos θϕ3(s, v0))B(s).

From equation (3.5), we have{
−∂y∂v (s, v0) cos θ(s) + ∂z

∂v (s, v0) sin θ(s) 6= 0

−∂y∂v (s, v0) sin θ(s) + ∂z
∂v (s, v0) cos θ(s) = 0

From β(s) 6= 0, we infer

(3.8)

{
∂z
∂v (s, v0) = β(s) sin θ(s)
∂y
∂v (s, v0) = −β(s) cos θ(s)

So, we can present the following theorem:

Theorem 3.1. Let α(s),L1 ≤ s ≤ L2, be a unit speed curve with nonvanishing
curvature and let α(s), L1 ≤ s ≤ L2, be a Mannheim partner B-curve. α is a



Surface family with a common Mannheim B-geodesic curve 7

isogeodesic curve on the surface (3.1) if and only if

(3.9)



x(s, v0) = y(s, v0) ≡ 0, z(s, v0) = −λ,
∂z
∂v (s, v0) = β(s) sin θ(s)

∂y
∂v (s, v0) = −β(s) cos θ(s) , β(s) 6= 0

θ′(s) = −τ(s).

where L1 ≤ s ≤ L2 , K1 ≤ v, v0 ≤ K2 (v0 fixed) θ is the angle between the N1 and
the N vector of the curve α.

Corollary 3.2. Combining the conditions (3.4) and (3.8), we have found the neces-
sary and sufficient conditions for the surface ϕ to have the Mannheim partner B-curve
of the given curve α an isogeodesic. We call the set of surfaces defined by (3.4) and
(3.8) the family of surfaces with common geodesic. Any surface ϕ(s, v) defined by
(3.3) and satisfying (3.9) is a member of this family.

Secondly, from Theorem 2.2 for γ = π, similar calculations lead to

x(s, v0) = y(s, v0) ≡ 0, z(s, v0) = −λ,
∂z
∂v (s, v0) = β(s) sin θ(s)

∂y
∂v (s, v0) = β(s) cos θ(s) , β(s) 6= 0

θ′(s) = −τ(s).

4 Ruled surfaces with a common Mannheim
B-geodesic curve

As is well-known, a surface is said to be “ruled” if it is generated by moving a straight
line continuously in Euclidean space E3. Ruled surfaces are one of the simplest objects
in geometric modelling as they are generated basically by moving a line in space. One
important fact about ruled surfaces is that they can be generated by straight lines.
A practical application of this type surfaces is that they are used in civil engineering
and physics, [12]. A surface ϕ is called a ruled surface in Euclidean space, if it is a
surface swept out by a straight line l moving alone a curve α. The generating line l
and the curve α are called the rulings and the base curve of the surface, respectively.

We show how to derive the formulations of a ruled surfaces family such that the
common Mannheim B-geodesic is also the base curve of ruled surfaces.

Theorem 4.1. Given an arc-length curve α(s), there exists a ruled surface family
possessing α(s) as a common Mannheim B-geodesic.

Proof. Choosing marching-scale functions as

(4.1)


x(s, v) = (v − v0)x(s)

y(s, v) = (v − v0)β(s) sin θ(s)

z(s, v) = (v − v0)β(s) cos θ(s)− λ,
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and β(s) 6= 0 and θ′(s) = −τ(s), equation (3.1) takes the following form of a ruled
surface

(4.2) ϕ(s, v) = α(s) + (v − v0) [x(s)T (s) + β(s) sin θ(s)N1(s)− β(s) cos θ(s)N2(s)] ,

which satisfies equation (3.9) interpolating α(s) as a common Mannheim B-geodesic
curve. �

Remark 4.1. Observe that, changing x(s) and β(s) in equation (4.2) yields different
ruled surfaces interpolating α(s) as a common Mannheim B-geodesic.

Corollary 4.2. Ruled surface (4.2) is developable if and only if

x(s) =
τ(s)

κ(s)
β(s), β(s) 6= 0,

for some real valued function x(s).

Proof. The surface

ϕ(s, v) = α(s) + (v − v0) [x(s)T (s) + β(s) sin θ(s)N1(s)− β(s) cos θ(s)N2(s)]

is developable if and only if det(α′, R,R′) = 0, where

R(s) = x(s)T (s) + β(s) sin θ(s)N1(s)− β(s) cos θ(s)N2(s).

If necessary calculations are made and determinants are used we get

x(s)β(s) [k2(s) sin θ(s) + k1(s) cos θ(s)] + β2(s)θ′(s) = 0,

where {
k1(s) = κ(s) cos θ(s),
k2(s) = κ(s) sin θ(s)

and θ′(s) = −τ(s), β(s) 6= 0

are used, we obtain x(s) = τ(s)
κ(s)β(s), β(s) 6= 0, which completes the proof. �

5 Examples of generating simple surfaces and ruled
surface with commonMannheim B-geodesic curve

Example 5.1. Let α(s) = (cos s, sin s, 0) be a unit speed curve. Then it is easy to
show that κ(s) = 1 , τ(s) = 0.

From equation (2.4), θ′(s) = −τ(s)⇒ θ = c, c =constant. Here c = 0 can be taken.

From equation (2.5), k1(s) = cos 0 = 1, k2(s) = sin 0 = 0.

From equation (2.3), 
T (s) = (− sin(s), cos(s), 0),

N1(s) = (− cos s,− sin s, 0),

N2(s) = (0, 0, 1).
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a) If we take x(s, v) = 0, y(s, v) = − sin(v), z(s, v) = −λ + v sin(v) and λ = 1,
v0 = 0, β(s) = 1, then the equation (3.9) is satisfied. Thus, we obtain a member of
the surface with common Mannheim B-geodesic curve as

ϕ1(s, v) = (cos s(1− v sin v), sin s(1− v sin v),− sin v) ,

where 0 ≤ s ≤ 2π , 0 ≤ v ≤ 2π (Fig.2).

Fig.2. ϕ1(s, v) as a member of the surface and its common Mannheim B-geodesic curve.

b) If we take x(s, v) = 0, y(s, v) = −v, z(s, v) = −λ− v2 and λ = 1, v0 = 0, β(s) =
1 then the equation (3.9) is satisfied. Thus, we obtain another member of the surface
with common Mannheim B-geodesic curve as

ϕ2(s, v) =
(
cos s+ v2 cos s, sin s+ v2 sin s,−v

)
,

where 0 ≤ s ≤ 2π , 0 ≤ v ≤ 2π (Fig.3).

Fig.3. ϕ2(s, v) as a member of the surface and its common Mannheim B-geodesic curve.

Example 5.2. Let α(s) =
(
4
5 cos s,− 3

5 cos s, 1− sin s
)

be a unit speed curve. Then
it is easy to show that


T (s) =

(
− 4

5 sin s, 35 sin s,− cos s
)

N(s) =
(
− 4

5 cos s, 35 cos s, sin s
)

B(s) = (3
5 ,

4
5 , 0)

, κ(s) = 1 , τ(s) = 0.

From equation (2.4), θ′(s) = −τ(s)⇒ θ = c, c =constant. Here c = 0 can be taken.

From equation (2.5), k1(s) = cos 0 = 1, k2(s) = sin 0 = 0.
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From equation (2.3),

N1(s) =
(
2
5 cos s,− 3

5 cos s, 12 sin s
)

N2(s) =
(

2
√
3

5 cos s, 3
√
3

10 cos s,
√
3
2 sin s

)
.

If we take x(s, v) = 0, y(s, v) = − sin(v), z(s, v) = −λ + v sin(v) and λ = 1, v0 =
0, β(s) = 1 then the equation (3.9) is satisfied. Thus, we obtain a member of the
surface with common Mannheim B-geodesic curve as

ϕ3(s, v) =


4
5 cos s+ 2

5v sin v cos s− 2
√
3

5 sin v cos s,

− 3
5 cos s− 3

5v sin v cos s− 3
√
3

10 sin v cos s,

1− sin s+ 1
2v sin v sin s−

√
3
2 sin v sin s


where 0 ≤ s ≤ 2π , 0 ≤ v ≤ π (Fig.4).

Fig.4. ϕ3(s, v) as a member of the surface and its common Mannheim B-geodesic curve.

In equation (4.2), if we take x(s) = 0, then we obtain the following developable ruled
surface with a common Mannheim B-geodesic curve as

ϕ4(s, v) =

(
1

5
cos s

(
4− 2

√
3v
)
,−3

5
cos s

(
1 +

√
3

2
v

)
, 1− sin s

(
1 +

√
3

2
v

))
,

where 0 ≤ s ≤ 2π , 0 ≤ v ≤ 2π (Fig.5).

Fig.5. ϕ4(s, v) as a member of the developable ruled surface

and its common Mannheim B-geodesic curve.
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In equation (4.2), if we take x(s) = s, then we obtain the following nondevelopable
ruled surface with a common Mannheim B-geodesic curve as

ϕ5(s, v) =

 4
5 cos s− v

5

(
4s sin s+ 2

√
3 cos s

)
,− 3

5 cos s+ 3v
5

(
s sin s−

√
3
2 cos s

)
,

1− sin s− v
(
s cos s+

√
3
2 sin s

)
 ,

where -2π ≤ s ≤ 2π , 0 ≤ v ≤ 2π (Fig.6).

Fig.6. ϕ5(s, v) as a member of the nondevelopable ruled surface

and its common Mannheim B-geodesic curve.
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