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Abstract. In this research paper, we develop the geometrical bearing on
Legendrian submanifolds of Sasakian space forms in terms of r-almost
Newton-Yamabe Soliton with the potential function ψ : Mn −→ R. Also,
we examine the certain conditions for L-minimal and totally geodesic
Legendrian submanifolds of Sasakian space form admitting the r-almost
Newton-Yamabe Soliton. Finally, we illustrate some examples based on
this study.
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1 Introduction

In the last twenty years, geometric flows are most significant tools to explain the
geometric structures in Riemannian geometry. A specific class of solutions on which
the metric evolves by dilation and diffeomorphisms plays a vital part in the study
of singularities of the flows as they appear as possible singularity models. They are
often called soliton solutions.

The theory of Yamabe flow, which was firstly introduced by Hamilton in his famous
research work [13], as a tool for constructing metrics of constant scalar curvature on
a Riemannian manifold (Mn, g), n ≥ 3. The Yamabe flow is an evolution equation
for metrics on Riemannian manifolds is given by

∂

∂t
g(t) = −ρg(t), g(0) = g0,(1.1)

where ρ is the scalar curvature corresponding to Riemannian metric g and t is time,
which is used to deform a metric by smoothing out its singularities.

A Yamabe soliton is a spacial solution of the Yamabe flow that moves by one
parameter family of diffeomorphism generated by fixed vector field X on Mn with a
constant λ satisfying the following equation

1

2
LUg = (ρ− λ)g,(1.2)
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where LUg is the Lie derivative of the metric g, in direction of vector field U . Accord-
ing to Pigola et al. [16] if we replace the constant λ in (1.2) with a smooth function
λ ∈ C∞(M), called soliton function. In this more general framework we refer to
equation (1.2) as being the fundamental equation of an almost Yamabe soliton. If
λ > 0, λ < 0 or λ = 0, then the (Mn, g) is called Yamabe expander , Yamabe shrinker
or Yamabe steady soliton, respectively.

In the particular situation when the vector field X is the gradient of a smooth
function ψ : Mn −→ R, the manifold will be called a gradient almost Yamabe soliton.
The function ψ is called the potential function of the gradient almost Yamabe soliton.
In this case equation (1.2) becomes

Hessψ = (ρ− λ)g,(1.3)

where Hessψ stands for the Hessian of the potential function ψ. The almost gradient
Yamabe soliton equation (1.3) links geometric information about the curvature of the
manifold through the scalar curvature tensor and the geometry of the level sets of the
potential function by means of their second fundamental form. Hence, study almost
gradient Yamabe solitons under some curvature conditions is an interesting topic.

An Einstein manifold [4] with constant potential function is called a trivial gra-
dient Ricci soliton. Gradient Yamabe solitons [9] play an important role in Yamabe
flow as they correspond to self-similar solutions, and often arise as singularity models
[13].

It is worth to remark that they arise from the Ricci-Bourguignon flow recently
discovered by Cantino and Mazzieri ([5], [6]). In this more general setting, we call
(1.2) as being fundamental equation of an almost Ricci soliton [16].

Many geometers extensively studied the above mentioned solitons which is closely
related to this topic, for further details see ([5],[7], [11], [18], [19], [20]).

On the one hand isometric immersions of an almost Ricci soliton in to Riemannian
manifold discussed by Barros et al. [2]. In this case, if a Riemannian manifold has non-
positive sectional curvature, they established that an almost Ricci soliton is a Ricci
soliton with a vector field of integrable norm, then the manifold can not be minimal.
Furthermore, in [24] Wylie demonstrated that if a shrinking Ricci soliton, conceding
bounded norm of a vector U on a manifold, then that manifold must be compact. In
particular if Riemannian manifold is a space form of non-positive sectional curvature,
then such immersions can not be minimal. Cunah et al, [8] have studied the immersed
almost Ricci soliton under Newton transformation Pr with second-order differential
operators Lr and introduced the new notion r-almost Newton-Ricci soliton, for some
0 ≤ r ≤ n. Recently, in 2020, Siddiqi [21] discussed about Newton-Ricci-Bourguignon
almost solitons on Lagrangin submanifolds of complex space form.

On other hand Symplectic geometry covers different classes of symplectic man-
ifolds, contact manifolds and relation between them. The local structures such as
Hamiltonian dynamics and some special types of submanifolds mainly Lagrangian
submanifolds (symplectic case) and Legendrian submanifolds (contact case). Sym-
plectic geometry and contact geometry is a relatively new field in mathematics and
has connections to algebraic geometry, dynamical systems, geometric topology, and
theoretical physics.

The differential geometry of Legendrian submanifolds has been an important ge-
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ometric object of the contact geometry. Contact manifold is an odd-dimensional
manifold equipped with a completely non-integrable field of tangent hyperplanes and
a Legendrian submanifold is a submanifold everywhere tangent to this hyperplane
field, which moreover is of maximal dimension. Contact geometry has its roots in
classical mechanics. For instance, in optics, wave fronts of light waves propagating
in a space admit natural lifts to Legendrian submanifolds of the associated space of
contact elements (tangent hyperplanes). Furthermore, contact geometry is the odd-
dimensional counterpart of symplectic geometry which studies symplectic manifolds,
that is, manifolds that locally looks like the phase space of a mechanical system.

In the 1990’s Y.G. Oh [15] introduced the study of Hamiltonian minimal (H-
minimal) Lagrangian submanifolds in Kähler manifold. This is a nice extensions of
the notion of minimal submanifold, and has been studied by many geometers.([12],
[14], [23]). On the other hand, there is notion of Sasakian manifold which is an
odd-dimensional counterpart Kähler manifolds. In Sasakian manifold, we consider
Legendrian minimal (L-minimal) Legendrian submanifold which corresponds to (H-
minimal) Lagrangian manifold in Kählar manifold [15] .

There were two notions of Hamiltonian deformations [15] and Lagrangian defor-
mations in Lagrangian Geometry. In contrast, there is only a notion of Legendrian
deformations in Legendrian Geometry. Analogous to the Lagrangian submanifolds in
a complex space form, we consider a Legendrian submanifold in Sasakian space form.
Such a submanifold has been deeply studied over the past of several decades.

Therefore the present research article inspired by the above literature, in this
framework we have to explore the study of r-almost Newton-Yamabe soliton on Leg-
endrian submanifolds of Sasakian space form.

2 Sasakian space form

A (2m + 1)-dimensional differentiable manifold M2m+1 is called a contact manifold
[1] if there exits a globally defined 1-form η such that η ∧ (dη)m 6= 0. On a contact
manifold there exists a unique vector filed ζ satisfying

dη(ζ,X) = 0, η(ζ) = 0

for all U ∈ T (M2m+1).
Let M2m+1 be a (2m + 1)-dimensional Riemannian manifold. M is called an

almost contact manifold if it is equipped with an almost contact structure (ϕ, ξ, η),
where ϕ is a (1, 1)-tensor field, ξ a unit vector field, η a one-form dual to ξ satisfying
[1]

ϕ2 = −I + η ⊗ ζ, η ◦ ϕ = 0,(2.1)

ϕ(ζ) = 0, η(ζ) = 1, g(U, ζ) = η(U).(2.2)

It is well-known that there exists a Riemannian metric g such that

g(ϕU,ϕV ) = g(U, V )− η(U)η(V )(2.3)
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g(ϕU, V ) = −g(U,ϕV ),(2.4)

where U, V ∈ χ(M). Moreover, if the almost contact structure (ϕ, ζ, η) is normal, i.e.

(∇Uϕ)V = g(U, V )ζ − η(V )U(2.5)

∇Uζ = −ϕU(2.6)

for any vectors U, V on M , where ∇ denotes the Levi-Civita connection with respect
to g, then M is said to be a Sasakian manifold it is satisfies [ϕ,ϕ] + 2dη ⊗ ζ = 0 on
M2m+1, where [ϕ,ϕ] is the Nijenhuis torsion of ϕ. For more details and background,
see [1] and [25].

Let (M2m+1, ϕ, ζ, η, g) be a Sasakian manifold is a contact manifold with the con-
tact structure (η, g, ζ, ϕ) and Ln an m-dimensional manifold.

An immersion ϕ : Lm −→ M2m+1 is called Legendrian immersion of an m-
dimensional compact smooth manifold L into a (2m+1)-dimensional contact manifold
(M,η) such that [23]

1. Legendrian ⇐⇒ ϕ ∗ η = 0,

2. dim(L) = m.

3. An Legendrain immersion is called L minimal ⇐⇒ divϕH = 0, where H is the
mean curvature vector of ϕ.

We may choose an almost contact metric structure (ζ, g) on M compatible with the
contact structure η. A Legendrian deformation of ϕ is defined as a one-parameter
smooth family {ϕt} of Legendrian immersions ϕ : L −→M with ϕ0 = ϕ.

3 Legendrian submanifolds of Sasakian space form

A plane of TpM at p is called ϕ-section if it is spanned by U and ϕU , where U is
orthonormal to ζ. The curvature of ϕ-section is called ϕ-sectional curvature.

A (2m+ 1)-Sasakian space form is defined as a (2m+ 1)-Sasakian manifold with
constant ϕ-sectional curvature c and is denoted byM2n+1(c). As examples of Sasakian
space form, R2n+1 and S2n+1 are equipped with Sasakian space form structures( more
details in [1] and [25]). The curvature of a Sasakian space form M2n+1(c) is given by
[25]

R̄(U, V )W =
c+ 3

4
[g(V,W )U − g(U,W )V ](3.1)

+
c− 1

4
[η(U)η(W )V − η(V )η(W ) + g(U,W )η(V )ζ

−g(V,W )η(U)ζ + g(ϕV,W )ϕU − g(ϕU,W )ϕV − 2g(U,ϕV )ϕW ]

for any U, V,W ∈ T (M).
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Let Lm be an m-dimensional submanifold of a Sasakian space form M2m+1(c). If
the one-form η constrained in M is zero, then we say M is a Legendrian submanifold.
It is well-known that for such a submanifold ϕ maps any tangent vector to M at
any p ∈ M into the normal vector space T⊥p (M) i.e. ϕ(TpM) ⊂ T⊥p M . Actually, a
Legendrian submanifold is a special C-totally real submanifold (i.e. the unit vector
field ζ is orthonormal to M) [12] . Therefore we obtain from (2.5) and (2.6) that for
any U, V ∈ T (M),

g(ϕU,ϕV ) = g(U, V ), η(U) = g(U, ζ) = 0.(3.2)

4 r-almost Newton-Yamabe soliton

Let ϕ : Lm −→ Mm+p be an Legendrian immersion into an (2m + 1)-dimensional
Sasakian manifold M . We call Lm is an r-almost Newton-Yamabe soliton, for some
0 ≤ r ≤ m, if there exist a smooth function ψ : Lm −→ R such that [6]

Pr ◦Hessψ = (ρ− λ)g,(4.1)

where λ is a smooth function on Lm and Pr ◦Hessψ stands for tensor given by

Pr ◦Hessψ(U, V ) = g(Pr∇U∇ψ, V ),(4.2)

for tangent vectors fields U, V ∈ χ(M). For r = 0, equation (4.1) reduces to the
definition of a gradient almost Yamabe soliton.

The Gauss equation implies that

R(U, V,W,W
′
) = (R̄(U, V )W )T ) + g(BU,W )BV − g(BV,W )BU(4.3)

for every tangent vector fields U, V,W ∈ χ(L), where (.)T denotes the tangential
components of a vector field in χ(L) along Lm. Here B stands for second fundamental
form (or shape operator) of Lm in Mm+1 with respect to a fixed orientation related
to the second fundamental form h by

g(h(U, V ), α) = g(BαU, Y ),(4.4)

where α is a normal vector field on Lm.
R̄ and R denotes the curvature tensors of Mm+1(c) and Lm, respectively.

In particular, the scalar curvature ρ of the submanifold Lm satisfies

ρ =

m∑
i,j

g(R̄(Ei, Ej)Ej , Ei) +m2 ‖H‖2 − ‖B‖2 ,(4.5)

where {E1, ......Em} is an orthonormal frame on TM and |.| denotes the Hilbert-
Schmidt norm. When M2m+1(c) is a Sasakian space form of constant sectional cur-
vature c, we have the identity

τ =
m(m− 1)(c+ 3)

4
+m2 ‖H‖2 − ‖B‖2 .(4.6)
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Associated to second fundamental form B of the submanifold Lm there arem algebraic
invariants, which are the elementary symmetric functions ρr of its principal curvatures
k1, ...km, given by

ρ0 = 1, ρr =
∑

i1<...<ir

k1, ...km.(4.7)

The r-th mean curvature Hr of the immersion is define by (mr )Hr = ρr.
If r = 0, we have H1 = 1

mTr(A) = H the mean curvature of Lm.
For each 0 ≤ r ≤ m, we defines the Newton transformation Pr : χ(L) −→ χ(L) of

the submanifold Mm be setting P0 = I (the identity operator) and for 0 ≤ r ≤ m, by
the recurrence relation

Pr =

r∑
j=0

(−1)r−j(mj )HjA
r−j ,(4.8)

where Bj denotes the composition of B with itself, j times (B0 = I). Let us recall
that associated to each Newton transformation Pr one has the second order linear
differential operator Lr : C∞(L) −→ C∞(L) defined by

Lru = Tr(Pr ◦Hessu).(4.9)

When r = 0, we note that L0 is just the Laplacian operator. Moreover, it is not
difficult to see that

divM (Pr∇u) =

m∑
i=1

g(∇Ei
Pr)∇u, Ei) +

m∑
i=1

g(Pr(∇Ei
∇u), Ei)(4.10)

= g(divMPr,∇u) + Lru,

where the divergence of Pr on Lm is given by

divMPr = Tr(∇Pr) =

m∑
i=1

(∇Ei
Pr)Ei.(4.11)

In particular, when the ambient space has constant sectional curvature equation (4.10)
reduces to

Lru = divM (Pr∇u),(4.12)

because divMPr = 0 (see [15] for more details).
Our aim, it also will be appropriate to deal with the so called traceless second

fundamental form of the submanifold, which is is given by

Φ = BHI, Tr(Φ) = 0.(4.13)

and

‖Φ‖2 = Tr(Φ2) = ‖B‖2 −m ‖H‖2 ≥ 0.(4.14)
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with equality if and only if Mn is totally umbilical.
In order to establish our results let us mention the following maximum principle

due to Caminha et al. for more details see [10]. We follows that, for each p ≥ 1 use
the notation

Lp(L) =

{
u : Lm −→ R;

∫
L

|u|p dL < +∞
}
.(4.15)

Also, we have the following lemma:

Lemma 4.1. Let U be a smooth vector field on the n-dimensional, complete, non
compact, oriented Riemannian manifold Mn, such that divMU does not change sign
on Mn. If |X| ∈ L1(M), then divMU = 0.

The following results further generalized Theorem 1.2 in [2].

Theorem 4.2. If the data (g, ψ, λ, r) be complete r-almost Newton-Yamabe soliton on
Legendrian submanifold Lm in Sasakian space from M2m+1(c) of constant sectional
curvature c, with bounded second fundamental form and potential function ψ : Lm −→
R such that |∇ψ| ∈ L1(L). Then we have

1. If (c+ 3) ≤ 0, λ > 0 and then Lm can not be L-minimal,

2. If (c+ 3) < 0, λ ≥ 0 and then Lm can not be L-minimal.

3. If c = −3, λ ≥ 0 and Lm is L-minimal, then Lm is isometric to the Rm.

Proof. We know that the ambient space has constant sectional curvature, by equa-
tion (4.12) the operator Lr is a divergent type operator. On the other side, since
Lm has bounded second fundamental form it follows from (4.8) that the Newton
transformation Pr has bounded norm. In particular,

|Pr∇ψ| ≤ |Pr| |∇ψ| ∈ L1(L),(4.16)

Using (1) and (2), let us consider by contradiction that Lm is minimal. Then,
equation (4.6) jointly with the considering (c + 3) ≤ 0 (c + 3 < 0) imply that the
scalar curvature of Lm satisfies ρ ≤ 0(ρ < 0). Hence, contracting (4.1) we have
Lrψ = m(λ−ρ) > 0 in both case, which contradicts Lemma (4.1), since the fact after
mentioned. This completes the proof of the first two assertions.

For the (3) assertion, since the ambient space has constant sectional curvature
c = −3 and Lm is minimal, then the equation (4.6) becomes as

ρ = −‖B‖2 ≤ 0.(4.17)

So, since λ ≥ 0 we have that Lr(ψ) = m(λ − ρ) ≥ 0. Now, using the fact that
Lru = divM (Pr∇u) and |Pr∇ψ| ∈ L1(L), we have again from Lemma (4.1) that
Lrψ = 0 on Lm. Hence, we conclude that 0 ≥ mρ = mλ ≥ 0, that is, ρ = λ = 0. This
implies that ‖B‖2 = 0. Therefore, the r-almost Newton-Yamabe soliton Lm must be
geodesic and flat.

�
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In order to prove our next theorems we will need the following lemmas, which corre-
sponds to Theorem 3 [2].

Lemma 4.3. Let u be a non-negative smooth subharmonic function on a complete
Riemannian manifold Mn. If u ∈ Lp(M), for some p > 1, the u is constant.

Further, we are in condition to establish the following result, which holds when
the ambient space is an arbitrary Riemannian manifold.

Theorem 4.4. Let the data (g, ψ, λ, r) be complete r-almost Newton-Yamabe soliton
on Legendrian submanifold Lm in a Sasakian space form M2m+1(c) of sectional cur-
vature K, such that Pr is bounded from above (in the sense of quadratic forms) and
its potential function ψ : Lm −→ R is non-negative and ψ ∈ Lp(L) for some p > 1.
Then we have

1. If K ≤ −3, λ > 0 then Lm can not be L-minimal,

2. If K < −3, λ ≥ 0 then Lm can not be L-minimal,

3. If K ≤ −3, λ ≥ 0 and Lm is L-minimal, then Lm is flat and totally geodesic.

Proof. For proving (1), we begin with a contradiction that Lm is minimal our as-
sumption on the sectional curvature of the ambient space and equation (4.5) imply
that τ ≤ 0. Hence, contracting equation (4.1) we have

Lrψ = m(ρ− λ) > 0.(4.18)

Thus, since we are considering that Pr is bounded from above, there exists a positive
constant ω such that

ω∆ψ ≥ Lrψ > 0.(4.19)

In particular, from Lemma (4.3) we get that ψ must be constant, which gives a
contradiction. Finally, reasoning as in the proof of Theorem (4.2) we can easily
obtain (2) and (3).

In our next results we generalized Theorem 1.5 of [2] for the case when U = ∇ψ,
giving conditions for an r- almost Newton-Yamabe soliton on Legendrian submanifold
in Sasakian space form to be totally umbilical since it has bounded second fundamental
form. Therefore, we prove the following theorem:

Theorem 4.5. If the data (g, ψ, λ, r) be complete r-almost Newton-Yamabe soliton
on Legendrian submanifold Lm in Sasakian space M2m+1(c) of constant sectional
curvature c, with bounded second fundamental form and potential function ψ : Lm −→
R such that |∇ψ| ∈ L1(L). Then we have

1. λ ≥ (m−1)(c+3)
4 + mH2, then Lm is totally geodesic, with λ = (m−1)(c+3)

4 , and

scalar curvature ρ = m (m−1)(c+3)
4 ,
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2. If Lm is compact and λ ≥ (m−1)(c+3)
4 + mH2, then Lm is isometric to a Eu-

clidean sphere,

3. If λ ≥ (m−1)(c+3+H2)
4 , then Lm is totally umbilical. In particular, the scalar

curvature τ = m (m−1)(c+3)
4 KL is constant, where KL = 4λ

(n−1) is the sectional

curvature of Lm.

Proof. To prove (1), using the equations (4.1) and (4.6), we obtain

Lrψ = m[λ+
(m− 1)(c+ 3)

4
−m ‖H‖2] + ‖B‖2 .(4.20)

�

Then, for our consideration on λ, we get that Lrψ is non-negative function on Lm.
By Lemma (4.1) we find that Lrψ vanishes identically. Hence, from equation (4.20)

we arrive at that Lm is totally geodesic and λ = (m−1)(c+3)
4 . Moreover, it is clear

form (4.6) that ρ = m(m−1)(m+3)
4 , which complete the proof of (1).

If Lm is compact, as it is totally geodesic, then the ambient space must be neces-
sarily a sphere S2m+1 and Mm is isometric to the Euclidean sphere Sm, proving (2).

For the assertion (3), we start with equation (4.20) that can be written in terms
of the traceless second fundamental form Φ as

Lrψ = m[λ− (m− 1)(c+ 3 +H2)

4
] + ‖Φ‖2 .(4.21)

Therefore, our assumption on λ gives Lrψ ≥ 0. Then by applying Lemma (4.1)

once again we have Lrψ = 0. This implies that |Φ|2, that is, Lm is a totally umbilical.
In particular κ of Lm is constant and Lm has constant sectional curvature given by

KM = c+3+κ2

4 . This combined with (4.21) , we obtain that

λ =
(m− 1)(c+ 3 +H2)

4
=

(m− 1)(c+ 3 + κ2)

4
(4.22)

= (m− 1)KL,

which implies that ρ = m(m− 1)KL, as desired.
�

Now, we have the following consequence of the Theorem (4.5):

Theorem 4.6. Let the data (g, ψ, λ, r) be complete r-almost Newton-Yamabe soli-
ton on Legendrian submanifold Lm in Sasakian space form M2m+1(c) with constant
sectional curvature c. If λ = (m− 1)H2, then Lm is isometric to Sm.

From Theorem 1.6 of [2] which states that a nontrivial almost Yamabe soliton Lm,
minimally immersed in Sn+1 with ρ ≥ m(m− 2) and such that the nor of the second
fundamental form obtain its maximum, must be isometric to Sn. Now, applying
Theorem (4.5) we obtain an generalization of this results.
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Theorem 4.7. Let the data (g, ψ, λ, r) be complete r-almost Newton-Yamabe soliton
on Legendrian submanifold Lm in Sasakian space form M2m+1(c) with constant sec-
tional curvature c. Consider that ρ ≥ n(n − 2), the norm of the second fundamental
form attains its maximum and λ ≥ λ = (m− 1). Then, Lm is isometric to Sn.

Proof. Since the immersions is minimal with ρ ≥ m(m− 2), from (4.6) we arrive at

‖B‖2 = m(m− 1)− ρ ≤ n.

From Simons’s formula [22], we obtain

∆ ‖B‖2 = ‖∇B‖2 + (n− ‖B‖2) ‖B‖2 ≥ 0.(4.23)

Thus, we can apply Hopf’s strong maximum principle to get that ∇B = 0 on Mm.
Therefore, Proposition 1 of citeref17 assures that Lm must be compact and, hence,
the results from Theorem (4.5). �

Another application of Theorem (4.4), we can also obtain the following theorem:

Theorem 4.8. Let the data (g, ψ, λ, r) be complete r-almost Newton-Yamabe soli-
ton on Legendrian submanifold Lm in Sasakian space form M2m+1(c) with constant
sectional curvature c, such that Pr is bounded from above and its potential function
ψ : Lm −→ R is non-negative and ψ ∈ Lp(L) for some p > 1. Then we have

1. λ ≥ (m−1)(c+3)
4 + mH2, then Lm is totally geodesic, with λ = (m−1)(c+3)

4 , and

scalar curvature ρ = m(m−1)(c+3)
4 .

2. If λ ≥ (m−1)(c+3+H2)
4 , then Lm is totally umbilical. In particular, the scalar

curvature ρ = m(m−1)(KM+3)
4 is constant, where KM = 4λ

(m−1)−3 is the sectional

curvature of Lm.

Proof. Let us begin observing that by equation (4.20) and assumption on λ we get

Lrψ = m[λ− (m− 1)(c+ 3)

4
−m ‖H‖2] + ‖B‖2 ≥ 0.(4.24)

Since we are assuming that Pr is bounded from above, there is a positive constant ω
such that

ω∆ψ ≥ Lrψ ≥ 0.(4.25)

Using Lemma (4.3), we have that ψ must constant. Therefore Lrψ = 0, and

equation (4.24) we conclude that Lm is totally geodesic, λ = (m−1)(c+3)
4 and ρ =

m(m−1)(c+3)
4 , proving assertion (1), reasoning as in Theorem (4.5), it is easy to prove

assertion (2). �
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5 Some examples

Example 5.1. For the case of minimal Legendrian submanifolds in S2m+1(1). Let us
consider the standard immersion of Lm in S2m+1(1), which we know that its is totally

geodesic. In particular, Pr = 0 for all 1 ≤ r ≤ m, and choosing λ = (m−1)
m , we obtain

that the immersion satisfies equation (4.1).

Example 5.2. Let S2m+1(1) be the unit sphere in the Euclidean space Rm+1 and ψ :
S2m+1(1) ↪→ Rm+1 the natural embedding with induced metric g on S2m+1(1), then
(S2m+1(1), ϕ, ξ, η, g) is a contact metric manifold.It is well known that this contact
metric structure gives a Sasakian structure on S2m+1(1) and its a Sasakian space form
with constant ϕ-sectional curvature c = 1.

Let i : Lm −→ S2m+1(1) ⊂ Rm+1 be an immersion of a smooth m-dimensional
manifold Lm in to unit sphere.
pasn For a constant t ∈ R2m+2, according to [3], by choosing the functions f̄t on
R2m+2 such that

f̄l(t) = −g(t, l) + 2m− 1

and

ψl(t) = −f̄l + c, f̄l := i ∗ f̃l ∈ C∞(S2m+1),

where l ∈ S2m+1(1), t 6= 0, c ∈ R2m+2 and t = (t1, .....t2m+1) ∈ S2m+1 is the position
vector, we have that (S2m+1, g,∇ψl, λl) satisfies

Hessψl = (ρ− λl)g.(5.1)

On the other hand, it is well know that S2m+1 is totally umbilical with r-th mean
curvature Hr = 1 and second fundamental form B = I. In particular, for every
0 ≤ r ≤ m the Newton tensor are given by

Pr = αI,(5.2)

where α =
∑r
j=0(−1)r−j(mj ). Hence, taking smooth function ψ = α−1ψl we get that

subamnifold satisfied equation (4.3).

Example 5.3. We recall the Gaussian soliton is the Euclidean space Rm endowed
with its standard metric |.| admits the standard Sasakian structure and the potential

function ψ(x) = λ
4 |x|

2
. It is well know that the horospheres of the hyperbolic space

Hm+1 are totally umbilical hypersurface isometric to Rm, having r-th mean curvature
Hr = 1 and second fundamental form B = I. Hence, we can reason as in example
(5.2) to verify that the horospheres Rm ↪→ Hm+1 satisfies equation (4.3).

Example 5.4. The odd dimensional Euclidean space admits the standard Sasakian
structure , we denote by R2m+1(−3).In general, an immersion into R2n+1(−3) which
lies in some cylinders and minimal in the cylinder.
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