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Abstract. Recognizing the deficiency that C. Guenther’s arguments can
not solve the stability of Ricci flows because of the Ricci flow equation
being not strictly parabolic, our previous paper first studied the stability
of Ricci flows based on Killing conditions. In this paper, we consider
the stability of Ricci flows, and of quasi-Ricci flows based on bounded
curvature conditions, and also obtain some interesting results.
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1 Introduction

It is interesting to investigate the stability of Ricci flows. The study of Ricci flows
has been an active field over the past several decades. It is well known that, in the
early days of 1983, R. Hamilton [12], drawing inspiration from the work by J. Eells
Jr and J. H. Sampson [9], introduced the celebrated Ricci flows as follows

(1.1)
∂

∂t
g = −2Rc[g], g(0) = g0

A fundamental and difficult problem in differential geometry is to find a standard
metric satisfying some prescribed conditions over a Riemannian manifold. For in-
stance, concerning the celebrated Yamabe problem [20], it is essential to find a metric
with a constant scalar curvature; and for the constant Ricci curvature, one needs to
solve an Einstein equation. The study of Ricci flows, in general, is exactly to find
a standard metric satisfying the given conditions, and to solve Ricci equation. The
typical problem related to Ricci flows is the following short-time existence theorem:

Given a compact and smooth Riemannian manifold (Mn, g0), there exists a unique
smooth solution g(t) defined on a short-time-interval such that g(0) = g0.

It is natural to ask that in which case the long-time existence theorem of Ricci
flows is tenable and the solution converges to a constant curvature metric. The
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usual cases in this respect are those with positive curvatures. Moreover, the study
of the singularity [18] of solutions to Ricci flows and the estimation [24] of geometric
invariants associated with different pinch-conditions have achieved relatively profound
and sufficient development.

There are many interesting results related to Ricci flows [4], [11]-[16] since Ricci
flows were introduced by R. Hamilton. However, there are many important and
interesting problems being open. Anyone of them is the stability problem of Ricci
flows. These questions can be written as follows.

Let the solution g(t) of Ricci flows with initial value g0 converge, and g̃0 belong to
a neighborhood of g0, then, is it true that the solution g̃(t) of Ricci flows with initial
value g̃0 converges ?

In [24], Ye studied the stability of Ricci flows with a metric of constant non-zero
sectional curvature and he replaced the original Ricci flows by the value-normalized
Ricci flows

∂

∂t
g = −2Rc[g] +

2
n

(
∮

Rdµ)g, g(0) = g0

where
∮

Rdµ +
∫

Rdµ∫
dµ

.
Ye also derived that there exists a C2−neighborhood N (g0) of g0 such that, for

any g̃0 ∈ N (g0), the solution of Ricci flows g̃(t) corresponding to g̃0 converges to g0 if
g0 is a Riemannian-Pinched Einstein metric with non-zero scalar curvature. For the
stability of Ricci flows of the flat metric, he has not obtained a solution. Following
on the heels of Ye’s work, C. Guenther etc [10] first introduced center manifolds [6]
and maximal regularity theory [17, 21] and derived the stability of Ricci (DeTurck)
flows in constant curvature spaces. The maximal regularity theory says that if A is
a suitable quasi-linear differential operator acting on an appropriate function space,
and if its linearization DA at a fixed point has an eigenvalue on the imaginary axis,
then the evolution of solutions starting near that fixed point can be described by the
presence of exponentially attractive center manifolds.

Since the Ricci flow evolution equation (1.1) is not a strictly parabolic system,
the maximal regularity theory can not be applied directly to it. It is known that a
strictly parabolic evolution equation, i.e., the DeTurck [7] equation,

(1.2)
∂

∂t
g = −2Rc[g]− Pu(g), g(0) = g0

can replace the Ricci flow equation. In fact, the solution of (1.2) is equivalent to that
of (1.1) up to a simple parameter diffeomorphic transform group. Hence, one can
study the stability of convergent Ricci flows by virtue of the stability of convergent
DeTurck flows.

C. Guenther [10] studied the stability of Ricci flows corresponding to initial value
metric with non-zero constant curvature, but in this setting the DeTurck flow does
not satisfy maximal regularity theory: no matter what u takes, any stable solution to
this equation does not exist. Thus, we will consider the normalized DeTurck equation
as follows

(1.3)
∂

∂t
g = −2Rc[g]− Pu(g) +

2
n

(
∮

Rdµ)g, g(0) = g0

In fact, in this setting, u = g0 is a stable solution of (1.3).
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Since a Riemannian manifold of quasi-constant curvatures is the special quasi-
Einstein space [26, 27], we generalized naturally the problem (1.2) to the quasi-
constant curvature manifold, i.e., we will consider the quasi-DeTurck flows [3] as
follows

(1.4)
∂

∂t
g = −2Rc[g]− Pu(g) + 2

R− T

n− 1
g + 2

nT −R

n− 1
ξ ⊗ ξ, g(0) = g0

where ξ is a unit vector field, and T is the Ricci principal curvature corresponding to
ξ. Notice that the stability here is different from the one that is posed in [28].

We know that the DeTurck flows, given by C. Guenther [10], are in fact obtained by
adding Pu(g) to Ricci flows such that all the quadratic terms up to Laplace operator
vanishes, and thus they shared the same principal symbols with Laplace operator.

Motivated and inspired by the structure of DeTurck flows, in our previous paper
[25], we considered the stability of Ricci flows in terms of Killing conditions, but we
adopted the other arguments to derive similar interesting conclusions, this argument
successfully avoids DeTurck flows and makes consideration directly to Ricci flows.
In this paper [25], we studied the following problem and obtained some interesting
conclusions

(a) The stability of the solution of Ricci flows with Killing conditions in a constant
curvature space.

Moreover, for the quasi-Ricci flows [3]

(1.5)
∂

∂t
g = −2Rc[g] + 2

R− T

n− 1
g + 2

nT −R

n− 1
ξ ⊗ ξ, g(0) = g0

we also derived that
(b) The stability of the solution of quasi-Ricci flows with Killing conditions in a

quasi constant curvature space.
It is well known that the Killing condition is too strong, thus we wish to eliminate

this condition and replace it by curvature conditions. In other words, we study the
stability of Ricci flows and quasi-Ricci flows based on bounded curvature conditions,
and will get some interesting results.

The organization of this paper is as follows. In Section 2, we will recall some
necessary notations and give terminologies. Section 3 is devoted to the proofs of main
theorems. The main results are related to the stability of Ricci flows over a constant
curvature space and stability of quasi-Ricci flows over a quasi-constant curvature
space.

2 Preliminaries

For convenience, we first give some preparatory knowledge. Let M be a closed con-
nected smooth manifold, and denote by S2(M) the bundle of symmetric covariant
2-tensors over M, and by S+

2 (M) the subset of the positive definite tensors. In this
setting, a smooth Riemannian metric g is an element of C∞(S+

2 (M)). On the other
hand, we denote briefly by S2 + C∞(S2(M)) and S+

2 + C∞(S+
2 (M)), and denote

also by Sµ
2 + C∞(Sµ

2 (M)) the space of all metrics with the same volume element
given by g, and by Sµ+

2 + C∞(Sµ+

2 (M)) the collection of positive definite tensors of
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C∞(Sµ
2 (M)). Denote by Λp = Λp(T ∗M) the p−form bundle on M, and denote by

Ωp = C∞(Λp) the differential p−form bundle.
Assume that D(M) is the smooth diffeomorphic group: (h, φ) 7→ φ∗h acting on

S+
2 , and it is easy to check that g is of Einstein if and only if φ∗g is of Einstein, where

g is a Riemannian metric on M and its volume form is dµ.
Define a map δ = δg : S2 → Ω1 by

(2.1) δ : h 7→ δh = −gij∇ihjkdxk

whose formal adjoint under the L2 inner product

(·, ·) +
∫

M

< ·, · > dµ

is the map δ∗ = δ∗g : Ω1 → S2 given by δ∗ : ω 7→ 1
2Lω]g = 1

2 (∇iωj +∇jωi)dxi ⊗ dxj ,
where ω] is a vector field metrically isomorphic to ω.

Define G : S+
2 × S2 → S2, by virtue of [7], as

(g, u) 7→ G(g, u) = (uij − 1
2
gkluklgij)dxi ⊗ dxj

and P : S+
2 × S+

2 → S2 as

(g, u) 7→ P (g, u) + Pu(g) = −2δ∗g(u−1δg(G(g, u)))

Thus, one can consider the following evolution equation (DeTurck equation)

(2.2)
∂

∂t
g = −2Rc[g]− Pu(g), g(0) = g0

For the sake of convenience, we call Āu(g)g + −2Rc[g] − Pu(g) the DeTurck
operator, then, the formula (2.2) can be rewritten as

∂

∂t
g = −2Rc[g]− Pu(g) = Āu(g)g, g(0) = g0.

It is well known that the DeTurck operator Āu(g)g, in the local sense, can be written
as

(Āu(g)g)ij = a(x, u, g)klpq
ij

∂2

∂xp∂xq
gkl + b(x, u, ∂u, g)klp

ij

∂

∂xp
gkl + c(x, u, ∂u)kl

ijgkl,

where a(x, ·, ·), b(x, ·, ·, ·), c(x, ·, ·) are smooth functions with respect to x ∈ Mn, re-
spectively, and are analytic with respect to the remaining arguments.

On the other hand, the right hand of (2.2) and Laplacian operator have the same
symbol. It is easy to see that, for any u ∈ S+

2 , the equation (2.2) is strictly parabolic,
and its unique solution g provides a unique solution φ∗t g of (1.1) with initial value g0,
where the diffeomorphisms φt are generated by integrating the vector field

V i + giju−1
jk gklgpq(∇puql − 1

2
∇lupq)

Assume that (M, g) is a Riemannian manifold, and denote by ∆ = gij∇i∇j the
Laplace operator. Let ∆l be the Licherowicz-Laplace operator such that ∆l : S2 → S2

given by
∆lhji = ∆lhji + 2Rjpqih

pq −Rk
j hki −Rk

i hjk.
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Lemma 2.1 ([10]). Let g ∈ S+
2 , h ∈ S2, and define H + trgh + gjihji, divhk +

∇phkp. Let g̃ = g + εh, and denote by Γ̃, R̃, dµ̃ the Christoffel coefficient, curvature
tensor, volume element of g̃, respectively. Then, one arrives at

∂
∂ε Γ̃

k
ij(g̃)|ε=0 = 1

2gkl(∇ihjl +∇jhil −∇lhij);
∂
∂ε R̃

l
ijk(g̃)|ε=0 = 1

2 (∇i∇khl
j −∇i∇lhjk −∇j∇khl

i +∇j∇lhik

+Rl
ijmhm

k −Rm
ijkhl

m);
∂
∂εdµ̃(g̃)|ε=0 = 1

2Hdµ;
∂
∂ε g̃

ij |ε=0 = −gikgjlhkl = −hij ;
∂
∂ε (LX g̃)ij |ε=0 = Xk∇khij + hik∇jX

k + hjk∇iX.

Let Θ0,Θ1,Ξ0, Ξ1 be the Banach spaces such that there holds[2]: Ξ0 = h0+σ ⊃
Θ0 = h0+ρ ⊃ Ξ1 = h2+σ ⊃ Θ1 = h2+ρ, where 0 < σ < ρ < 1, hr+ρ(r ∈ N, ρ ∈
(0, 1)) is the special little Hölder space. Assume that ‖ · ‖r+ρ is the Hölder norm of
Cr(M,S2). Taking θ = ρ−σ

2 ∈ (0, 1), by using [2, 8, 22], one gets Θ0
∼= (Ξ0, Ξ1)θ and

Θ1
∼= (Ξ0,Ξ1)1+θ.
For the given 0 < ε ¿ 1 and 1

2 ≤ β < α < 1, let

Gβ = Gβ(u, ε) = {g ∈ (Θ0, Θ1)β : g > εu}, Gα = Gα(u, ε) = Gβ ∩ (Θ0, Θ1)α

where g > εu implies that it holds g(X,X) > ε for any X satisfying |X|2u = 1.
Moreover, for any g ∈ Gβ , Āu(g) can be regarded as a linear operator acting

on h2+σ. Denote by ĀΞ1(g) : Ξ1 ⊆ Ξ0 → Ξ0 the unbounded linear operator on
Ξ0, its dense domain D(ĀΞ1(g)) = Ξ1. Make corresponding changes and denote
by ĀΘ1(g) : Θ1 ⊆ Θ0 → Θ0 the unbounded linear operator whose dense domain
D(ĀΘ1(g)) = Θ1. At the same time, the functions g 7→ ĀΘ1(g) and g 7→ ĀΞ1(g) define
the analytic maps given by Gα → L(Θ1,Θ0), Gβ → L(Ξ1, Ξ0), where L(Θ1, Θ0) is
the vector space of all bounded linear operators from Θ1 to Θ0, and for any g ∈ Gβ ,
Āu(g) is the minimal generator of a strongly continuous analytic semigroup.

Theorem 2.1 ([10, 17, 21, 25]). Let Θ1 ⊂ Θ0 be a continuous dense inclusion of
a Banach space. For a given 0 < β < α < 1, suppose that Θα and Θβ are the
corresponding interpolation space. For the following equation

(2.3)
∂

∂t
g = Ā(g)g, g(0) = g0

where Ā(·) ∈ Ck(Gβ , L(Θ1,Θ0)), and k is a positive integer, Gβ ⊂ Θβ is an open
subset. Assume that there exist a pair Banach space Ξ0 ⊃ Ξ1 and a prolongation
Ã(·) of Ā(·) to domain D(Ã(·)) that are dense in Ξ0. In addition, for any g ∈ Gα =
Gβ ∩Θα, then there holds

· Ã(g) ∈ L(Ξ1,Ξ0) generates a strongly continuous semigroup on L(Ξ0,R) +
L(Ξ0);

· Θ0
∼= (Ξ0, D(Ã(g)))θ, Θ1

∼= (Ξ0, D(Ã(g)))1+θ, θ ∈ (0, 1), where (·, ·)θ are the
continuous interpolations [8, 22];

· Ā(g) is identical to Ã(g) on D(Ā) ⊂ Θ0;
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· Ξ1 ↪→ Θβ ↪→ Ξ0 is a continuous dense inclusion and there exists c > 0, δ ∈ (0, 1)
such that for any η ∈ Ξ1 there holds

‖η‖Θβ
≤ c‖η‖1−δ

Ξ0
‖η‖δ

Ξ1
.

Let ĝ ∈ Gα be a fixed point of (1.2) and the spectral decompositions[1]
∑

of
the linearization operator DĀ|g be of

∑
=

∑
s ∪

∑
cu, where

∑
s ⊂ {z : Rez < 0},∑

cu ⊂ {z : Rez ≥ 0} and
∑

cu ∩iR 6= f¡ , then it holds
(1) If one denotes by S(λ) the eigenspace of λ ∈ ∑

cu, then Θα admits the decom-
position Θα = Θs

α ⊕Θcu
α for all α ∈ [0, 1], where Θcu

α =
⊕

λ∈∑
cu

S(λ);

(2) For any r ∈ N, there exists dr > 0 such that for all d ∈ (0, dr], there is
a bounded Cr map ϕ = ϕr

d : B(Θcu
1 , ĝ, d) → Θs

1 with ϕ(ĝ) = 0 and Dϕ(ĝ) = 0.
The image of ϕ lies in the closed ball B̄(Θs

1, ĝ, d), and its graph is a Cr manifold
Mcu

loc + {(γ, ϕ(γ)) : γ ∈ B(Θcu
1 ), ĝ, d} ⊂ Θ1 satisfying the following

TĝMcu
loc
∼= Θcu

1 .

If
∑

cu ⊂ iR, we call Mcu
loc a local center manifold [6] and a local center unstable

manifold otherwise;
(3) There are constants Cα > 0 (α ∈ (0, 1)) independent of ĝ and constant ω > 0

and d̂ ∈ (0, d0] such that for each d ∈ (0, d̂], one arrives at

‖πsg(t)− ϕ(πcug(t))‖Θ1 ≤
Cα

t1−α
e−ωt‖πsg(0)− ϕ(πcug(0))‖Θα

for all solutions g(t) with g(0) ∈ B(Θα, ĝ, d) and all times t ≥ 0 such that the solution
g(t) remains in B(Θα, ĝ, d), where πs, πcu say the projections from B(Θα, ĝ, d) onto
Θs

α, and Θcu
α , respectively.

3 Main theorems

We first state some necessary notations and terminologies in this subsections. In fact,
we know that for Ricci flows one can write down by virtue of Lemma 2.1 the following

DRji =
1
2
(∆hji +∇j∇iH −∇jdivhi −∇idivhj + 2Rjpqig

pq −Rjlh
l
i −Rilh

l
j),

then, one gets

−2[D(Rc)]ji = ∆hji −∇jXi −∇iXj + Sji

where Xj is of the 1-form defined by Xj = gpq∇phqj − 1
2∇j(gpqhpq), and Sji =

2Rjpqig
pq −Rjlh

l
i −Rilh

l
j .

Moreover, let V, W be two vector bundles over a manifold Mn, and L : C∞(V ) →
C∞(W ) be a linear differential operator with order k. Denote by L(ν) +

∑
|α|≤k

Lα∂αν,

where Lα ∈ hpm(V,W ) is a bundle homomorphism for each multi-index α. If ξ ∈
C∞(T ∗Mn), then we call σ[L](ξ) =

∑
|α|≤k

Lα(Πjξ
αj) the total symbol of L in the
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direction ξ. We also call σ̂[L](ξ) =
∑
|α|=k

Lα(Πjξ
αj) the principal symbol of L in the

direction ξ.
A linear partial differential operator L is said to be elliptic if its principal symbol

σ̂[L](ξ) is an isomorphism where ξ 6= 0. A nonlinear operator L is said to be elliptic
if its linearization DL is elliptic.

In other words, one arrives at the following

σ̂[−2D(Rc)](ξ)(h) = |ξ|2h
This implies that the linearized Ricci flow in view of Killing 1-form is elliptic. In
this setting, we call A(g)g = −2Rc[g] + 2

n (
∮

Rdµ)g the Ricci operator. The volume-
normalized Ricci flow [24] can be rewritten as

(3.1)
∂

∂t
g = A(g)g, g(0) = g0

In the following subsection, we will also pay our attention to the linearization of
the Ricci operator.

Lemma 3.1. Assume that Mn is a compact manifold of constant curvature, then the
linearized Ricci operator A(g)g at g0 is as follows

(3.2) [(DA(g)g)|g0h]ji = ∆hji + 2Rjpqih
pq − 2R

n2
gji

∮

Mn

Hdµ + (LX]g)ji

where H = gjihji.

Proof. According to Definition and Lemma 2.1, one has

[DAu(g)]|g0h = −2DRc|g0 +
2
n

D(
∮

Rdµ)|g0g +
2
n

∮
Hdµh.

(−2DRc|g0h)ji = ∆hji −∇j(gpq∇phpi)−∇i(gpq∇phpj)
+∇j∇i(gpqhpq) + 2gpqRr

pjihrq − gpqRjphiq − gpqRiphjq.

Since (Mn, g0) is of an Einstein manifold, we get

(−2DRc|g0h)ji = ∆hji + 2gpqRr
pjihrq − 2R

n
hji + (LX]g)ji.

2
n

D(
∮

Rdµ)g =
2
n

[
∮

(
1
2
(R−

∮
Rdµ)H− < Rc, h >)dµ]g = − 2

n
[
∮

< Rc, h > dµ]g.

Thus, we have

(DAu(g)|g0h)ji = ∆hji + 2Rjpqihpq − 2R

n
hji − 2

n
[
∮

< Rc, h > dµ]gji

+
2R

n
hji + (LX]g)ji

= ∆hji + 2Rjpqih
pq − 2R

n2
[

∫
Mn

Hdµ∫
Mn

dµ
]gji + (LX]g)ji.
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This ends the proof of Lemma 3.1. ¤
Notice that g0 is a stable point of (1.5) for Quasi-Constant curvature spaces [3, 24].

Then, we can state and derive the main conclusions in the next subsection.

Theorem 3.1. Let Mn be a compact manifold of constant curvatures, and ‖Rm‖ ≤
2Λ(Λ− 1), where Λ = inf

h
{

∫
Mn |∇h|2∫
Mn |h|2 }, h is of a (0,2)-type tensor. Θ is of a closure of

Sµ
2 (⊃ Sµ+

2 ) in the sense of ‖ · ‖2+ρ for a fixed ρ ∈ (0, 1), then there holds the following
(1) Tg0Sµ+

2
∼= Θ has a decomposition: Tg0Sµ+

2 = Θs ⊕Θc;
(2) For each r ∈ N, there exists a Cr-center manifold Mc

loc that is tangential to
Θc in an neighborhood Or of g0 on Θ and is locally invariant for solutions of (3.1) as
long as they remain in Or;

(3) There exist positive constants C and ω, and neighborhoods O′r of g0 in Θ such
that

‖πsg̃(t)− ϕ(πcg̃(t))‖2+ρ ≤ Ce−ωt‖πsg̃(0)− ϕ(πcg̃(0))‖2+ρ

for all solution g̃(t) of (3.1) and all times t ≥ 0 such that g̃(t) ∈ O′r.
Remark 3.1. Theorem 3.1 in [25] is a generalization of Theorem 3.1 in [3] with
symmetric conditions being replaced by Killing conditions. In [3], we considered the
stability of DeTurck flows, but the stability of Ricci flows here is studied here. On the
other hand, Theorem 3.1 in this paper is also a further generalization of Theorem 3.1
in [25] with Killing conditions being replaced by curvature conditions.

Proof. We take Sµ
2 + C∞(Sµ

2 (M)) as the space of all metrics with the same
volume element given by g0. By [19], one knows that the elements in S+

2 can be
changed into those in Sµ

2 by using homothetic deformations and the tangent space
TSµ

2 of Sµ
2 consists of all zero-trace elements in S2, then on TSµ

2 , there holds H = 0.
On the other hand, it is well known that g0 is a stable point of (3.1), then formula
(3.2) can be simplified as

∂

∂t
hji = Lhji = ∆hji + 2Rjpqih

pq − (LX]g)ji

= ∆hji + 2Rjpqih
pq −∇jXi −∇iXj

Since ∫

Mn

hjiRjpqih
pqhijdµ =

∫

Mn

Rjpqig
plgqmhlmhjidµ

=
∫

Mn

Rj
lm
i hlmhjidµ

≤
∫

Mn

2Λ(Λ− 1)hlmhjidµ(3.3)

≤ 2Λ(Λ− 1)(
∫

Mn

h2
lmdµ)

1
2 (

∫

Mn

h2
jidµ)

1
2

= 2Λ(Λ− 1)‖h‖2L2

By using the hypothesis and formula (3.3), it is not hard to see by a direct computation
that there holds the following

(Lh, h) ≤ −2
∫

Mn

|∇h|2dµ + 2Λ(Λ− 1)‖h‖2L2 + 2(
∫

Mn

|∇h|2dµ)
1
2 (

∫

Mn

|h|2dµ)
1
2 ≤ 0,
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where h ∈ S0
2 is of an non-zero element. Considering the operator L acting on Sµ

2 , it
is not hard to see by virtue of [10] that Theorem 3.1 is tenable. ¤

Theorem 3.2. Assume that (Mn, g0) is a quasi-constant curvature space, ‖Rm‖ ≤
1
2Λ(Λ − 1), where Λ = inf

h
{

∫
M |∇h|2∫
M |h|2 }, ξ is a unit vector field and its corresponding

Ricci principal curvature T satisfies T ≥ n − 1. For a fixed ρ ∈ (0, 1), let Θ be a
closure of Sµ

2 in the sense of ‖ · ‖2+ρ. Then it holds
(1) Tg0S

µ+

2
∼= Θ has the following decomposition: Tg0S

µ+

2 = Θs ⊕Θc;
(2) There exists a constant d0 > 0 such that for all d ∈ (0, d0], there is a bounded

C∞ map ψ : B(Θc, g0, d) → Θs satisfying ψ(g0) = 0, Dψ(g0) = 0, the image of
ψ dependent on the closed ball B̄(Θs, g0, d) and its graph M c

loc = {(γ, ψ(γ)) : γ ∈
B(Θc, g0, d)} ⊂ Θ1 satisfying Tg0M

c
loc
∼= Θc;

(3) There are constants C > 0, ω > 0 and d∗ ∈ (0, d0] such that for each d ∈ (0, d∗],
one arrives at

‖πsg̃(t)− ψ(πcg̃(t))‖2+ρ ≤ Ce−ωt‖πsg̃(0)− ψ(πcg̃(0))‖2+ρ

for all solutions g̃(t) of the quasi-Ricci flow (1.5) with g̃(0) ∈ B(Θ, g0, d) and all times
t ≥ 0, where πs, πc denote the projections onto Θs, Θc respectively.

Remark 3.2. Similar to Remark 3.1, Theorem 3.2 can be regarded as a generalization
of Theorem 3.2 in [25] and of Theorem 3.1 in [3]. In this note, we use the curvature
conditions to replace the symmetry conditions of (0,2) tensors given in [3], and the
Killing conditions posed in [25] to consider the stability of Ricci flows not that of
DeTurck flows.

Proof. By a similar argument in [25], we now denote firstly by A(g)g of (1.5) at
g0, and then consider the linearization of the right-hand (1.5), we have

∂

∂t
hji = (D(Au(g))|g0h)ji = −2(DRc|g0h)ji + 2D(

R− T

n− 1
gji +

nT −R

n− 1
ξiξj)|g0 .

and gets, by using Lemma 2.1 and [5], the following

DR|g0 = −4H +∇p∇qhpq− < h, Rc >;
DT |g0 = D(ξiξjRji) = −miξjRij − ξimjRij + ξiξjDRij

= −miξjRij − ξimjRij +
1
2
ξiξj(∇p∇ihjp +∇p∇jhip −4hij −∇i∇jH),

where m is of the variation of ξ. Thus, by a direct computation similar to [3], we
know

2D(
R− T

n− 1
gij)|g0 =

2
n− 1

(−4H +∇p∇qhpq− < h,Rc >)gij

+
2

n− 1
[mkξlRkl + ξkmlRkl

− 1
2
ξkξl(∇p∇khlp +∇p∇lhkp −4hkl −∇k∇lH)]gij

+
2

n− 1
(R− T )hij ,
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and

2D(
nT −R

n− 1
ξiξj)|g0 =

2nDT

n− 1
ξiξj − 2DR

n− 1
ξiξj +

2
n− 1

(nT −R)D(ξiξj)

=
2n

n− 1
[−mkξlRkl − ξkmlRkl +

1
2
ξkξl(∇p∇khlp +∇p∇lhkp

− 4hkl −∇k∇lH)]ξiξj − 2ξiξj

n− 1
(−4H +∇p∇qhpq

− < h,Rc >) +
2

n− 1
(nT −R)D(ξiξj).

Since M is a quasi-constant curvature space, and by a direct computation, then we
have

−2[D(Rc)(h)]ji = 4hji + 2Ripqjh
pq − (LX]g)ji

− 2(
R− T

n− 1
)hji − (

nT −R

n− 1
)(ξiξkhk

j + ξjξkhk
i ),

where X = X(g, h) is of 1-form defined as Xk = gpq∇phqk − 1
2∇k(gpqhpq).

From these formulae above and [25], then we obtain

∂

∂t
hji = 4hji + 2Ripqjh

pq − (LX]g)ji

+
2

n− 1
(−∆H +∇p∇qhpq − R− T

n− 1
H − nT −R

n− 1
hpqξpξq)(gji − ξjξi)(3.4)

+
ξkξl

n− 1
(−2hkl +∇p∇khlp +∇p∇lhkp −∆hkl −∇k∇lH)(gji − nξjξi)

Adopting similar arguments in Theorem 3.1, we now take Sµ
2 + C∞(Sµ

2 (M)) as
the space of all metrics with the same volume element given by g0, and by [19], one
knows that the elements in S+

2 can be changed into those in Sµ
2 by using homothetic

deformations, and the tangent space TSµ
2 of Sµ

2 consists of all trace-zero elements in
S2. Then, on TSµ

2 , there holds H = 0. Thus, from (3.4), we arrive at

∂

∂t
hij =

2
n− 1

(∇p∇qhpq − nT −R

n− 1
hpqξpξq)(gij − ξiξj)− (LX]g)ji

+
ξkξl

n− 1
(−2hkl +∇p∇khlp +∇p∇lhkp −4hkl)(gij − nξiξj)

+ 4hij − 2(R− 2T )
(n− 1)(n− 2)

hij(3.5)

+
2(nT −R)

(n− 1)(n− 2)
(gijξpξqh

pq − giqξpξjh
pq − gpjξiξqh

pq)

Considering the acting on equation (3.5) with ξi and ξj , we have

ξiξj(
∂

∂t
hij − 24hij − 2hij +

2T

n− 1
hij +∇p∇ihjp +∇p∇jhip − (LX]g)ji) = 0.

Since ξ is of arbitrary, this implies that

(3.6)
∂

∂t
hij − 24hij − 2hij +

2T

n− 1
hij +∇p∇ihjp +∇p∇jhip − (LX]g)ji = 0
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We compute attentively and simplify (3.6) as follows

∂

∂t
hij = 24hij + 2hij − 2T

n− 1
hij

+gtp(Rk
tiphjk + Rk

tjphik + Rk
tijhkp + Rk

tjihkp) + 2(LX]g)ji.

According to the proof of Theorem 3.1, it is not hard to derive that there holds

(Lh, h) ≤ 2
∫

Mn

4h · hdµ + 2
∫

Mn

(1− T

n− 1
)h2dµ

+ 2Λ(Λ− 1)‖h‖2L2 + 4‖∇h‖L2‖h‖L2

≤ 2(
∫

Mn

∇(∇h · h)dµ− ‖∇h‖2) + 2(1− T

n− 1
)‖h‖2

+ 2Λ(Λ− 1)‖h‖2L2 + 4‖∇h‖L2‖h‖L2

≤ −2
∫

Mn

|∇h|2dµ + 2Λ(Λ− 1)‖h‖2L2

+ 4‖∇h‖L2‖h‖L2 − 2(
T

n− 1
− 1)‖h‖2 ≤ 0,

where h ∈ S0
2 is of a non-zero element. Considering the operator L acting on Sµ

2 , it
is not hard to see by virtue of [10] that Theorem 3.2 is tenable. ¤
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