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1 Introduction

A connected submanifold Mn of a pseudo-Euclidean space Em
t is called of finite type

if its position vector field x can be written as a sum of eigenfunctions of its Laplacian;
more precisely, Mn is said to be of finite k-type if its position vector field x admits
the following spectral decomposition

x = x0 + x1 + · · ·+ xk,(1.1)

where ∆xi = λixi, i = 1, 2, . . . , k, λ1 < · · · < λk, x0 is a constant vector in Em
t

and x1, . . . , xk are non-constant Em
t -valued maps on Mn. If one of the eigenvalues

λi vanishes, then Mn is said to be of null k-type (see [1, 2] for detail). We can choose
a coordinate system on Em

t with x0 as its origin. Then we have the following simple
spectral decomposition of x for a null 2-type submanifold M :

x = x1 + x2, ∆x1 = 0, ∆x2 = λx2.(1.2)

In [4, 5], B.Y. Chen gave a classification of null 2-type surfaces in the Euclidean
space E3 and E4. He proved that circular cylinders and helical cylinders are the only
surfaces of null 2-type in E3 and E4, respectively. In [5], he also proved that a surface
M in the Euclidean space E4 is of null 2-type with parallel normalized mean curvature
vector if and only if M is an open portion of a circular cylinder in a hyperplane of
E4. However, in [12], S.J. LI showed that a surface M in Em with parallel normalized
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mean curvature vector is of null 2-type if and only if M is an open portion of a circular
cylinder.

Later, in [6], B.Y. Chen and H. Song proved that a space-like surface M in E4
t , (t =

1, 2) is of null 2-type with constant mean curvature if and only if M is an open
portion of a helical cylinder of the first kind or a helical cylinder of the second kind
in E4

t , (t = 1, 2).
Also, in [11], D.S. Kim and Y.H. Kim gave complete classification theorems on

null 2-type surfaces in Minkowski space E4
1 . They proved that a Lorentzian surface

M in E4
1 is of null 2-type with constant mean curvature if and only if M is an open

portion of a helical cylinder of third kind, a helical cylinder of fourth kind, an extended
B-scroll or a cylinder E1

1 × S1(r), S1
1(r)× E.

In the case of the classification of hypersurfaces, the constancy of the mean curva-
ture does not provide enough information to obtain a characterization of null 2-type
hypersurfaces of Euclidean spaces and Lorentzian spaces. In [9, 10], A. Ferrandez and
P. Lucas studied null 2-type hypersurfaces of Euclidean spaces and null 2-type space-
like hypersurfaces of Lorentzian spaces with additional assumption of having at most
two distinct principal curvatures. They proved that Euclidean hypersurfaces of null
2-type and having at most two distinct principal curvatures are locally isometric to
a generalized spherical cylinder, [9], and a space-like hypersurface of the Lorentzian
space Em

1 with at most two distinct principal curvatures is of null 2-type if and only
if it is locally isometric to a generalized hyperbolic cylinder, [10].

The assumptions on hypersurfaces to be of null 2-type are not enough for subman-
ifolds Mn, n ≥ 3 of the Euclidean spaces Em and the pseudo-Euclidean spaces Em

t

to be of null 2-type. In [7], the author proved that a 3-dimensional submanifold M of
the Euclidean space E5 having two distinct principal curvatures in the parallel mean
curvature direction and having a second fundamental form of a constant square length
is of null 2-type if and only if M is locally isometric to one of E × S2 ⊂ E4 ⊂ E5,
E2 × S1 ⊂ E4 ⊂ E5 or E × S1(a) × S1(a). However, in [8], the author proved that
a 3-dimensional submanifold M of the Euclidean space E5 with constant mean cur-
vature and non-parallel mean curvature vector is an open portion of a 3-dimensional
helical cylinder if and only if M is flat and of null 2-type.

In this work we study the classification of null 2-type space-like submanifolds
of the pseudo-Euclidean spaces. We mainly prove that a 3-dimensional space-like
submanifold M of the pseudo-Euclidean space E5

t with parallel normalized non-null
mean curvature vector is of null 2-type having two distinct principal curvatures in the
mean curvature direction and having a constant scalar curvature τ if and only if M
is locally isometric to one of the following:

1. S1(a)× E2 ⊂ E4 ⊂ E5
1 or S2(a)× E ⊂ E4 ⊂ E5

1 when H is space-like,

2. H1(a)× E2 ⊂ E4
1 ⊂ E5

1 or H2(a)× E ⊂ E4
1 ⊂ E5

1 when H is time-like, or

3. H1(a)×E2 ⊂ E4
1 ⊂ E5

2 , H2(a)×E ⊂ E4
1 ⊂ E5

2 , or H1(a)×H1(a)×E ⊂ E5
2 .

The cases (1) and (2) imply that there is no such a submanifold that lies fully in
E5

1 .
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2 Preliminaries

Let Em
t be an m-dimensional pseudo-Euclidean space with metric tensor given by

g = −
t∑

i=1

(dxi)2 +
m∑

i=t+1

(dxi)2

where (x1, . . . , xm) is a rectangular coordinate system of Em
t . So (Em

t , g) is a flat
pseudo-Riemannian manifold with signature (t,m− t). When t = 1, Em

1 is called the
Lorentzian space. The hyperbolic space Hm(a) is defined by

Hm(a) = {x ∈ Em+1
1 | 〈x, x〉 = −a2 and x1 > 0},

where x1 is the first coordinate in Em+1
1 .

Let M be an n-dimensional pseudo-Riemannian submanifold of an m-dimensional
pseudo-Euclidean space Em

t . We denote by h, A, H, ∇ and ∇⊥, the second fun-
damental form, the Weingarten map, the mean curvature vector, the Riemannian
connection and the normal connection of the submanifold M in Em

t , respectively.
Let e1, . . . , en, en+1, . . . , em be an adapted local orthonormal frame in Em

t such
that 〈eA, eB〉 = εBδAB , ( εB = 〈eB , eB〉 = ±1), e1, . . . , en are tangent to Mn

t and
en+1, . . . , em are normal to Mn

t . We use the following convention on the range of
indices:

1 ≤ A,B, C, . . . ≤ m, 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ β, ν, γ, . . . ≤ m.

Let {ωA} be the dual 1-forms of {eA} defined by ωA(X) = 〈eA, X〉, (ωA(eB) =
〈eB , eA〉 = εBδAB). Also, the connection forms ωB

A are defined by

deA =
m∑

B=1

ωB
AeB , εBωB

A + εAωA
B = 0.

For lifting or lowering indices we use ωA = εAωA, ωB
A = εBωAB . Then the structure

equations of Em
t are obtained as follows

dωA =
m∑

B=1

ωB ∧ ωA
B , dωB

A =
m∑

C=1

ωC
A ∧ ωB

C .(2.1)

Restricting these forms to M we have

ωβ = 0, dωβ =
m∑

i=1

ωi ∧ ωβ
i = 0, β = n + 1, . . . , m.

By Cartan’s Lemma, we can write

ωβ
i =

n∑

j=1

hβ
ijω

j , hβ
ij = hβ

ji,(2.2)

where hβ
ij are coefficients of the second fundamental form in the direction eβ .
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The mean curvature vector H is given by

H =
1
n

m∑

β=n+1

εβtr(hβ)eβ(2.3)

and the scalar curvature τ is given by

n(n− 1)τ = n2|H|2 − ‖h‖2(2.4)

where ‖h‖2 denotes the square of the length of the second fundamental form which is
defined by

‖h‖2 =
∑

β

εβtr(hβ)2 =
∑

i,j,β

εβεiεj(h
β
ij)

2.(2.5)

The first equation of (2.1) gives

dωi =
m∑

j=1

ωj ∧ ωi
j , εiω

i
j + εjω

j
i = 0,(2.6)

where {ωi
j} is the connection forms on M and uniquely determined by these equations.

However, from the second equation of (2.1) we can have the Gauss and Codazzi
equations, respectively, as

dωj
i =

n∑

k=1

ωk
i ∧ ωj

k +
m∑

β=n+1

ωβ
i ∧ ωj

β(2.7)

and

dωβ
i =

n∑

k=1

ωk
i ∧ ωβ

k +
m∑

ν=n+1

ων
i ∧ ωβ

ν .(2.8)

Using (2.2) and the connection equations ∇eiej =
n∑

k=1

ωk
j (ei)ek we can restate the

equations of Gauss (2.7) and Codazzi (2.8) relative to the basis e1, . . . , en, respectively,
as follows

e`(ω
j
i (ek))− ek(ωj

i (e`)) =
n∑

r=1

{ωr
i (e`)ωj

r(ek)− ωr
i (ek)ωj

r(e`)

+ ωj
i (er)[ωr

k(e`)− ωr
` (ek)]}+

m∑
ν=n+1

εjεν(εkhν
ikhν

j` − ε`h
ν
jkhν

i`),(2.9)

1 ≤ i < j ≤ n, 1 ≤ ` < k ≤ n

and
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ej(hν
ik)− ek(hν

ij) =
n∑

r=1

{ hν
ir[ω

r
k(ej)− ωr

j (ek)] + hν
rkωr

i (ej)− hν
rjω

r
i (ek)}

+
m∑

β=n+1

(hβ
ijω

ν
β(ek)− hβ

ikων
β(ej)),(2.10)

ν = n + 1, . . . , m, i = 1, . . . , n, 1 ≤ j < k ≤ n.

If the normal space of M in Em
t is flat, then we can choose a parallel orthonormal

normal basis on M . Therefore we have ων
β = 0. Hence the equations of Codazzi become

ej(hν
ii) = εjεi(hν

ii − hν
jj)ω

j
i (ei), i 6= j.(2.11)

and

εj(hν
ii − hν

kk)ωi
k(ej) + εk(hν

jj − hν
ii)ω

i
j(ek) = 0, i 6= j 6= k 6= i.(2.12)

3 Some Basic Lemmas

We need the following some well known formulas and lemmas ( for details see [1, 2,
3, 5]).

Lemma 3.1. Let M be an n-dimensional pseudo-Riemannian submanifold of a
pseudo-Euclidiean space Em

t . Then we have

∆H = ∆∇⊥H +
n∑

i=1

εi{(∇eiAH)ei + A∇⊥ei
Hei + h(AHei, ei)},(3.1)

where ∆∇⊥ = −∑n
i=1 εi{∇⊥ei∇⊥ei −∇⊥∇ei

ei} is the Laplacian operator associated
with the induced normal connection ∇⊥.

Lemma 3.2. Let M be an n-dimensional pseudo-Riemannian submanifold of a
pseudo-Euclidiean space Em

t . Then we have

tr(∇AH) =
n∑

i=1

εi(∇eiAH)ei =
n

2
∇〈H,H〉+ tr(A∇⊥H),(3.2)

where ∇〈H,H〉 is the gradient of 〈H, H〉 and tr(A∇⊥H) =
∑n

i=1 εiA∇⊥ei
Hei.

1-type pseudo-Riemannian submanifold of a pseudo-Euclidiean space Em
t were

completely classified in [3]. They are minimal submanifolds of Em
t , minimal subman-

ifolds of a pseudo-Riemannian sphere in Em
t or minimal submanifolds of a pseudo-

hyperbolic space in Em
t .

For a null 2-type submanifold M of Em
t , using ∆x = −nH the definition (1.2)

implies

∆H = λH.(3.3)
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Lemma 3.3. Let M be an n-dimensional pseudo-Riemannian submanifold of a
pseudo-Euclidiean space Em

t . Then, there is a constant λ 6= 0 such that ∆H = λH
holds if and only if M is either of 1-type or of null 2-type.

If the mean curvature vector H is non-null, that is, 〈H, H〉 6= 0, then there is an or-
thonormal normal frame en+1, . . . , em such that H = αen+1, where α2 = εn+1〈H, H〉.

Lemma 3.4. Let M be an n-dimensional pseudo-Riemannian submanifold of a
pseudo-Euclidiean space Em

t . If M is not of 1-type, then M is of null 2-type if and
only if

tr(∇̄AH) = tr(∇AH) + tr(A∇⊥H) = 0(3.4)

and

∆∇⊥H +
n∑

i=1

εih(AHei, ei) = λH,(3.5)

for some nonzero constant λ.

From the definition of ∆∇⊥H we have

∆∇⊥H = (∆α +
m∑

ν=n+2

n∑

i=1

εiενεn+1α(ων
n+1(ei))2)en+1

−
m∑

ν=n+2

{2ων
n+1(∇α) + α tr(∇ων

n+1) +
n∑

i=1

m∑

β=n+2

αεiω
β
n+1(ei)ων

β(ei)}eν ,(3.6)

where ∇α =
n∑

i=1

εi(eiα)ei and tr(∇ωβ
n+1) =

∑n
i=1 εi(∇eiω

β
n+1)(ei).

Lemma 3.5. Let M be an n-dimensional pseudo-Riemannian submanifold of
Em

t . If M is not of 1-type and H = αen+1 is non-null, then M is of null 2-type if
and only if we have

tr(∇̄AH) =
n

2
∇〈H, H〉+ 2 tr(A∇⊥H) = 0(3.7)

∆α = λα− αεn+1‖An+1‖2 − α

n∑

i=1

m∑
ν=n+2

εiενεn+1(ων
n+1(ei))2,(3.8)

εβtr(AHAβ) = 2ωβ
n+1(∇α) + α tr(∇ωβ

n+1) + α

n∑

i=1

m∑
ν=n+2

εiω
ν
n+1(ei)ωβ

ν (ei),(3.9)

where λ is a nonzero constant, β = n + 2, . . . ,m and ‖An+1‖2 =
n∑

i=1

εi〈An+1ei,

An+1ei〉.
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By direct calculation the equation (3.7) becomes

tr(∇̄AH) =
n

2
εn+1∇(α2) + 2An+1(∇α) + 2α

n∑

i=1

m∑
ν=n+2

εiω
ν
n+1(ei)Aeν (ei) = 0.

Using this equation we can have the following corollary from Lemma 3.5.

Corollary 3.1. Let M be an n-dimensional pseudo-Riemannian submanifold of
En+2

t . If M is not of 1-type, H = αen+1 is non-null and the normalized mean curva-
ture vector, en+1, is parallel, then M is of null 2-type if and only if we have

An+1(∇α2) +
nαεn+1

2
∇(α2) = 0,(3.10)

∆α = λα− αεn+1‖An+1‖2,(3.11)

tr(An+1An+2) = 0,(3.12)

where λ is a nonzero constant.

In [9, 10], the following theorems are given on null 2-type hypersurfaces of Euclid-
ean spaces and null 2-type space-like hypersurfaces of Lorentzian space.

Theorem 3.1. ([9]) Let M be a Euclidean hypersurface with at most two distinct
principal curvature. Then, M is of null 2-type if and only if it is locally isometric to
Ep × Sn−p(a).

Theorem 3.2. ([10]) Let Mn be a space-like hypersurface of the Lorentzian spaces
En

1 with at most two distinct principal curvature. Then, Mn is of null 2-type if and
only if it is locally isometric to Ep ×Hn−p(a).

4 Null 2-type space-like submanifolds of E5
t

We prove the followings.

Proposition 4.1. Let M be a 3-dimensional space-like submanifold of the pseudo-
Euclidean space E5

t with parallel normalized mean curvature vector such that M is not
of 1-type. If M is of null 2-type with the Weingarten map in the direction of the mean
curvature vector H has two distinct eigenvalues, then the mean curvature α is constant
on M .

Proof. As the codimension is 2 and the normalized mean curvature vector,
e4 = H/α, α2 = ε4〈H, H〉 , is parallel, then the unit normal vector e5 is also par-
allel. Therefore the normal space is flat, i.e., ω5

4 ≡ 0 on M . Hence we can have the
diagonalized Weingarten maps in the direction e4 and e5. Since A4 has two distinct
eigenvalues, say, h4

11 6= h4
22 = h4

33. We can write

A4 = diag(h4
11, h

4
22, h

4
22) and A5 = diag(h5

11, h
5
22, h

5
33)
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with h5
11 + h5

22 + h5
33 = 0. However, from (3.12) we get

tr(A4A5) = (h4
11 − h4

22)h
5
11 = 0(4.1)

because of h5
11 + h5

22 + h5
33 = 0. As h4

11 − h4
22 6= 0 we have h5

11 = 0 and h5
22 = −h5

33.
Assume that α is not constant. Let V = {p ∈ M : ∇α2(p) 6= 0} which is open in

M . From (3.10) it is seen that the vector ∇α2 is an eigenvector of A4 corresponding

to the eigenvalue −3αε4

2
. Then we may say that ∇α2 is parallel to e1 or e3 (the same

as e2). For the last case it could also be proved that the mean curvature α is constant
by using the same way as in the first case. Thus h4

11 = − 3αε4
2 and h4

22 = h4
33 = 9αε4

4
because of 3αε4 = h4

11 + 2h4
22. Then we have

ω4
1 = −3αε4

2
ω1, ω4

2 =
9αε4

4
ω2, ω4

3 =
9αε4

4
ω3.(4.2)

Since∇α2 is parallel to e1 we can have e2(α) = e3(α) = 0, that is, e2(h4
11) = e3(h4

11) =
0, and

dα = e1(α)ω1.(4.3)

However, by using the equation of Codazzi (2.11) for ν = 4 if i = 1 we have

ω2
1(e1) = ω3

1(e1) = 0,(4.4)

because of h4
11− h4

22 6= 0, and if j = 1, considering h4
22 = h4

33 =
9αε4

4
, then we obtain

ω1
2(e2) = ω1

3(e3) =
3
5

e1(α)
α

.(4.5)

Also, the equation of Codazzi (2.12) for ν = 4 and j = 1 implies that

ω1
2(e3) = ω1

3(e2) = 0.(4.6)

Applying the structure equations and using (4.6), it can be shown that dω1 = 0.
Hence we have locally

ω1 = du,(4.7)

where u is a local coordinate on U . From (4.3) and (4.7) we have dα∧ du = 0. This
shows that α is a function of u, i.e., α = α(u) and dα = α′(u)du. Thus, by (4.5) we
have

ω1
2(e2) = ω1

3(e3) =
3α′

5α
.(4.8)

Considering (4.4) and (4.6), from the equation of Gauss (2.9) for i = ` = 1, j =
k = 2 we get

e1(ω1
2(e2)) = (ω1

2(e2))2 + ε4h
4
11h

4
22.(4.9)

Using (4.8), the equation (4.9) turns into
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40αα′′ − 64(α′)2 + 225ε4α
4 = 0.(4.10)

Let y = (α′)2. Then the above the equation can be reduced to the following first
order differential equation:

2αy′ − 64y + 225ε4α
4 = 0,(4.11)

where y′ denotes the first derivative of y with respect to α. For this equation we obtain
the solution

(α′)2 = Cα16/5 − ε4

(
225
16

)2

α4,(4.12)

where C is a constant.
When we use the definition of ∆α, the fact that ∇α2 is parallel to e1 and the

equation (4.8) we obtain

∆α =
6(α′)2

5α
− α′′.(4.13)

Also, since ‖A4‖2 =
99α2

8
, considering (4.13) and the second equation (3.11) of Corol-

lary 3.1 we get

40αα′′ − 48(α′)2 + 40λα2 − 495ε4α
4 = 0.(4.14)

Combining (4.10) and (4.14) we obtain

(α′)2 = 45ε4α
4 − 5

2
λα2.(4.15)

As a result, using (4.12) and (4.15) we deduce that α is locally constant on V which
is a contradiction with the definition of M . Therefore α is constant on M . ¤

Let H1(a)×H1(a)× E = {(x1, x2, . . . , x5) : −x2
1 + x2

3 = −a2, −x2
2 + x2

4 = −a2}.
For later use we need the connection forms ωB

A of H1(a) × H1(a) × E ⊂ E5
2 . By a

suitable choice of the Euclidean coordinates, its equation takes the following form

x(u1, u2, u3) = (a cosh u2, a cosh u3, a sinhu2, a sinh u3, u1),

where a is a nonzero constant. If we put

e1 =
∂

∂u1
= (0, 0, 0, 0, 1), e2 =

1
a

∂

∂u2
= (sinhu2, 0, cosh u2, 0, 0),

e3 =
1
a

∂

∂u2
= (0, sinhu3, 0, cosh u3, 0),

e4 =
1√
2
(coshu2, cosh u3, sinhu2, sinhu3, 0),

e5 =
1√
2
(coshu2,− cosh u3, sinhu2,− sinhu3, 0),
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then, by a straight forward calculation we obtain

ω1 = du1, ω2 = adu2, ω3 = adu3, ω1
2 = ω1

3 = ω2
3 = ω4

1 = ω5
1 = ω4

5 = 0,

ω4
2 = − 1

a
√

2
ω2, ω4

3 = − 1
a
√

2
ω3, ω5

2 = − 1
a
√

2
ω2, ω5

3 =
1

a
√

2
ω3.(4.16)

Theorem 4.1. Let M be a 3-dimensional space-like submanifold of the pseudo-
Euclidean space E5

t with parallel normalized non-null mean curvature vector such that
M is not of 1-type. Then M is of null 2-type having two distinct principal curvatures
in the mean curvature direction and having a constant scalar curvature τ if and only
if M is locally isometric to one of the following:

1. S1(a)× E2 ⊂ E4 ⊂ E5
1 or S2(a)× E ⊂ E4 ⊂ E5

1 when H is space-like,

2. H1(a)× E2 ⊂ E4
1 ⊂ E5

1 or H2(a)× E ⊂ E4
1 ⊂ E5

1 when H is time-like, or

3. H1(a)×E2 ⊂ E4
1 ⊂ E5

2 , H2(a)×E ⊂ E4
1 ⊂ E5

2 , or H1(a)×H1(a)×E ⊂ E5
2 .

Proof. As the codimension is 2 and the normalized mean curvature vector, e4 =
H/α, is parallel, then the normal space is flat. Let M be of null 2-type and let the
Weingarten map in the direction H has two distinct principal curvatures. Then the
mean curvature α on M is constant by Proposition 4.1. However, as in the proof of
Proposition 4.1 we can have

A4 = diag(h4
11, h

4
22, h

4
22) and A5 = diag(0, h5

22,−h5
22).

By using (3.11) we have ‖A4‖2 = (h4
11)

2 + 2(h4
11)

2 = λ which is constant. Hence,
as α is constant, it is easily seen that the eigenvalues h4

11 and h4
22 of A4 are constant.

Since the scalar curvature and the eigenvalues of A4 are constant, by using (2.4) and
(2.5) we obtain h5

22 =const.
Using the fact that h4

11 6= h4
22 = h4

33, h5
11 = 0, h5

22 = −h5
33 and all hν

ij ’s are
constant, from the equations of Codazzi (2.11) and (2.12) for ν = 4 we obtain

ω1
j (ei) = 0, i = 1, 2, 3, j = 2, 3(4.17)

and for ν = 5 from (2.12) we get

h5
22ω

2
3(ei) = 0, i = 1, 2, 3.(4.18)

However, by using the equations of Gauss (2.9), for i = ` = 1, j = k = 2 and for
i = ` = 2, j = k = 3, we obtain, respectively,

h4
11h

4
22 = 0,(4.19)

and

e2(ω2
3(e3))− e3(ω2

3(e2)) = (ω2
3(e2))2 + (ω2

3(e3))2 + ε4(h4
22)

2 − ε5(h5
55)

2.(4.20)

Since A4 has two distinct eigenvalues, one of h4
11 and h4

22 is a non-zero constant.
Considering the equations (4.18), (4.19) and (4.20) we have the following classifica-
tions.
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Let t = 1, that is, ε4ε5 = −1.

Case 1. h4
11 6= 0 and h4

22 = 0. Then, by (4.18) we get h5
22 = 0 or ω2

3(ei) =
0, i = 1, 2, 3. Using the second part, the equation (4.20) implies that h5

22 = 0. Thus,
A5 vanishes. Since the normal space is flat and A5 ≡ 0, then M is contained in a
hyperplane P of E5

1 .
If H is space-like, then P is a space-like hyperplane of E5

1 . Therefore, by Theorem
3.1 M is locally isometric to the circular cylinder S1(a)× E2 ⊂ E4 ⊂ E5

1 .
If H is time-like, then P is a Lorentzian hyperplane of E5

1 . Therefore, by Theorem
3.2 M is locally isometric to the hyperbolic cylinder H1(a)× E2 ⊂ E4

1 ⊂ E5
1 .

Case 2. h4
11 = 0 and h4

22 6= 0. Then, by (4.18) we have h5
22 = 0 or ω2

3(ei) =
0, i = 1, 2, 3. Suppose that ω2

3(ei) = 0 for i = 1, 2, 3. Thus, from (4.20) we get
ε4(h4

22)
2 − ε5(h5

55)
2 = 0 which implies that h4

22 = h5
55 = 0 as ε4ε5 = −1. This is a

contradiction because h4
22 6= 0. Therefore ω2

3(ei) 6= 0 at least for one i ∈ {1, 2, 3} and
h5

55 = 0, and hence A5 vanishes on M. Considering that the normal space is flat, M
lies in a hyperplane P of E5

1 .
If H is space-like, then P is a space-like hyperplane of E5

1 . Therefore, by Theorem
3.1 M is locally isometric to S2(a)× E1 ⊂ E4 ⊂ E5

1 .
If H is time-like, then P is a Lorentzian hyperplane of E5

1 . Therefore, by Theorem
3.2 M is locally isometric to H2(a)× E1 ⊂ E4

1 ⊂ E5
1 .

Let t = 2, that is, ε4ε5 = 1. Then the normal space is time-like.
Case 3. h4

11 6= 0 and h4
22 = 0. Then, by (4.18) we get h5

22 = 0 or ω2
3(ei) = 0, i =

1, 2, 3. Using the second part, the equation (4.20) implies that h5
22 = 0. Therefore

A5 vanishes. Since the normal space is flat and A5 ≡ 0, then M is contained in a
Lorentzian hyperplane P of E5

2 . Therefore, by Theorem 3.2 M is locally isometric to
H1(a)× E2 ⊂ E4

1 ⊂ E5
2 .

Case 4. h4
11 = 0 and h4

22 6= 0. Then, by (4.18) we get h5
22 = 0 or ω2

3(ei) = 0, i =
1, 2, 3.

Subcase 4-a. ω2
3(ei) 6= 0 for at least one i ∈ {1, 2, 3} and h5

22 = 0. Hence, we
have A4 = diag(0, h4

22, h
4
22) and A5 ≡ 0. Considering that the normal space is flat,

M lies in a Lorentzian hyperplane P of E5
2 . Therefore, M is locally isometric to

H2(a)× E ⊂ E4
1 ⊂ E5

2 by Theorem 3.2 .
Subcase 4-b. h5

22 6= 0 and ω2
3(ei) = 0, i = 1, 2, 3. From (4.20) we get ε4(h4

22)
2 −

ε5(h5
55)

2 = 0 which implies that h4
22 = ∓h5

55 6= 0 as ε4ε5 = 1. Putting µ0 = h4
22 = − 3α

2
we have A4 = diag(0, µ0, µ0) and A5 = diag(0,∓µ0,±µ0). Considering ω2

3(ei) = 0, i =
1, 2, 3 and (4.17) it is seen that M is flat. Also, we can write

ω4
1 = 0, ω4

2 = µ0 ω2, ω4
3 = µ0 ω3, ω5

1 = 0, ω5
2 = ±µ0 ω2, ω5

3 = ∓µ0 ω3

Since M has a flat normal connection it is seen that the connection forms ωA
B coincide

with the connection forms of H1(a)×H1(a)×E given in (4.16). Therefore, from the
fundamental theorem of submanifolds, M is locally isometric to H1(a)×H1(a)×E ⊂
E5

2 .
The converses of all these cases are trivial. ¤

Remark : The cases (1) and (2) show that in the case t = 1 there is no such a
submanifold that lies fully in E5

1 .
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