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Abstract

In this paper, we classify all three-dimensional complex contact manifolds
which have global complex contact forms and which are complex homogeneous
with transitive groups of holomorphic contactomorphisms. We compare these
results to previous results by W. Boothby and J. Wolf.
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1 Introduction

A complex contact manifold is a complex manifold M of complex dimension 2n + 1
with an open atlas & = {O} such that

1. On each O € U, there is a holomorphic 1-form n with 5 A (dn)™ # 0 everywhere
on O.

2. On O N @', there exists a holomorphic function f : O N O' — C* such that
n=fn'

In particular, H°' = Uocu(|[]1V n) is a well-defined holomorphic subbundle of 710 M
with maximal rank. We say that M is complex homogeneous, if there is a complex
Lie group G acting transitively as a space of biholomorphic contactomorphisms (i.e.
preserving H) on M. For a general reference on these types of manifolds, see [3] and
[13].

In [4] and [5], W. Boothby classified all compact, simply-connected complex ho-
mogeneous complex contact manifolds. By later work of J. Wolf [20], S. Salamon [17],
and B. Bérard-Bergery [1], it was found that this list consisted of the twistor spaces
of homogeneous quaternionic-K&hler manifolds (See [2]). However, this list excluded a
sizable portion of complex contact manifolds. In particular, those with global complex
contact forms are left out, since their universal covers are not compact.

In this paper we will be classifying these manifolds. We will make heavy use
of the fact that all homogeneous complex 2-manifolds and 3-manifolds have been
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classified in [16] and [19], respectively. In the first section, we discuss an important
class of complex contact manifolds, the so-called complex Boothby-Wang fibrations.
In the third section, we present the main results. Finally, we end the paper with some
remarks.

2 Complex Boothby-Wang fibrations

In this section, we describe a newly discovered class of complex contact manifolds,
called the complex Boothby-Wang fibrations. Recall that in [6], W. Boothby and H.C.
Wang proved the following theorems.

Theorem 2.1 (Boothby-Wang Fibration, part i) Let B be a symplectic mani-
fold with fundamental 2-form Q such that [Q] € H?(M,Z). Then the principal S*-
bundle M corresponding to [Q] has a connection form n such that dn is the pull-back
of Q and n is a global real contact form on M.

Theorem 2.2 (Boothby-Wang Fibration, part ii) Let M be a compact, regular
contact manifold with contact form n'. Then M is the total space of an principal S*-
bundle w : M — B, where B is a symplectic manifold with symplectic form Q. Also,
there is a nowhere-zero function T on M such that n = ' is a global contact form
on M and a connection form for the fibration such that dn = (7)*(Q). Lastly, the
free S -action on M is defined by the characteristic vector field & of 1, given by the
equations n(€) =1 and 1(&)dn = 0.

The resulting real contact manifolds are called real Boothby-Wang fibrations.
In [9], the author proved complex analogues of these results.

Theorem 2.3 (Complex Boothby-Wang Fibration, part i) Let B be a complez-
symplectic manifold with a complex symplectic form Q = Qy + Qs such that both Q4

and Q2 are integral classes. Then M the S' x S' -bundle defined by ([Qu],[Q2]) €

H?*(B,Z) ® H*(B,Z) (or Q] € H*(B,Z +iZ)) has an integrable complex structure

and also a complex contact structure given by a holomorphic connection form whose

curvature form is given by w.

Theorem 2.4 (Complex Boothby-Wang Fibration, part ii) Let M be a (2n+1)-
dimensional compact complex contact manifold with a global holomorphic contact form
w such that the resulting vertical vertical vector fields U and JU are regular in M.
Then T generates a free S* x S'-action on M, and M is an principal S* x S*-bundle
over a complex symplectic manifold B such that w is a connection form of this fibration
and the symplectic form Q on B is given by w*{) = dn.

In our context, we are curious as to which of the above manifolds (called complex
Boothby- Wang Fibrations) are complex homogeneous. In particular, we need to know
which complex symplectic surfaces are complex homogeneous.

In [10], H. Geiges classified all complex symplectic surfaces.

Theorem 2.5 (Geiges) Let M be a closed 4-manifold. Then M admits a complex
symplectic structure if and only if M 1is diffeomorphic to one of the following mani-
folds:
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1. A complex torus,
2. A primary Kodaira surface,
3. A K3 Surface.

Furthermore, in [16], K. Oeljeklaus and W. Richthofer give a list of all complex ho-
mogeneous surfaces:

Theorem 2.6 Let M be a complex homogeneous surface.
1. (Tits [18]) If M is compact, then it is diffeomorhphic to one of the following:
(a) CP?
(b) CP! x CP!
(c) A complex torus
(d) A homogeneous Hopf surface
(e) The product of an elliptic curve with CP*
2. (Huckleberry, Livorni [11]) If M is non-compact, then it is one of the fol-
lowing:
(a) A product of complex homogeneous Riemann surfaces
(b) A topologically trivial C*-bundle over an elliptic curve
(c) An elliptic curve bundle over C
(d) A certain nontrivial C*-bundle over C*
(e) A C*-bundle over CP!
(f) A positive line bundle over CP!
(9) The affine quadric
(h) The complement of the quadric curve in CP? with the affine quadric as its

universal cover

The intersection of these two lists is simply the set of all complex torii. In [9], the
author shows that only a certain class of complex torii have complex Boothby-Wang
fibrations and that the universal cover of all such fibrations is the complex Heisenberg
group

1 Z9 Z1
HC: 0 1 =z :2’1,2’2,2’360
0 0 1

The complex contact structure of this manifold is given by the left-invariant form
w = dz1 — 2zodzs. For further details on this group, see [7].

3 Main theorem

Given a complex contact manifold M with a global complex contact form w, we define
U € T'"9M to be the unique holomorphic vector field given by the equations:
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We then let V = spanc(U). Then V is a holomorphic subbundle of T1OM, which is
transerve to H, i.e. T*°M = V & H. In general, the author shows in [8] that such
transerve subbundles can be constructed on any complex contact manifold, although
the resulting “vertical bundle” V in these cases will not necessarily split 7'° = V& H
holomorphically.

Theorem 3.1 If M is a three-dimensional complex-homogeneous complex contact
manifold with global complex contact form, then M is of the form M = G/T" where
G is a simply-connected three-dimensional complex Lie group and I' C G is a discrete
subgroup.

1. Suppose G is unimodular. Then
(a) G = SI(2,C), if rk(ad(V)) = €,

(b) G= EC(Q), the universal cover of Ecy(2) the rigid motions of the complex
euclidean plane, if rk(ad(V)) = oo,

(c) G = Hgy, if rk(ad(V)) = 1.

2. Suppose G is not unimodular. Then G is necessarily solvable; rk(ad(V)) = oo;
and G is one of the following complex Lie groups:

(a) The semidirect product Go = C x,, C?, for any o € C* \ 1, where 7, is a
certain representation of C in GI(2,C).

et te! wu
(b) G = 0 e v |:tbu,veC
0 0 1

Proof. We prove this theorem in two lemmas. The first lemma will classify all left-
invariant complex contact structures on complex Lie groups; the last will show that
there are no other possible three-dimensional complex-homogeneous complex contact
manifolds with a global complex contact form.

Lemma 3.2 Suppose G is a three-dimensional, simply-connected complex Lie group
with a left-invariant complex contact structure H. Then G is one of the complex Lie
groups as described above.

Proof. Suppose G is a 3-dimensional complex Lie group with a left-invariant complex
contact structure. Let g be the Lie algebra of G. Then there is a 2-dimensional complex
subbundle H = (]¢,]5) C g such that [es, e3] = 2f; ¢ H. Define the left-invariant
I-form n € g* by n = 1 fi* with respect to the dual basis {fi,es,e3} of g*. Then
there is a unique left-invariant vector field U € g such that n(U) = 1 and «(U)dn = 0.
And, thus, we have n = %U* with respect to the dual basis {U*, e}, e5}.

Set e; = U. Then, for any Z € g,

0= (er)dn)(2) = ~gn(ler, 2)).

Hence,
le2,e3] = 2e1 — ajex — fPies
les,e1] = azes  +  faes
[e1,e2] = azes + [Bses.
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An application of Jacobi’s identity gives that

043:/32-
and also that
{0 = —omoaz + Biae
0 = —ai13 + pife.

These last two equations can be put in the form

(2 5)(5)=(3)

Then we have

0 0 0
ad(er) = 0 —az —f
0 B2 B3

We now split into the various possible cases of ad(e;) according to its rank.
Case 1: rank(ad(e;)) = 2.
In this case,

—az —f
d6t< B2 Bs )7“)’

(o o) (4)=(0)

has a unique solution, namely a; = ;1 = 0. So, we have

so that the equation

[62, 63] = 261
les,e1] = asey + fae3
[e1,e2] = Bares  +  [Bses.

Since det(ad(e1)) # 0, we know that ad(e;) has at least one eigenvector X with
corresponding nonzero eigenvalue A. Furthermore, ad(e;)g C (ea, e3), so that X € H.
Also,

adler) = Jad(les,es)

1 1
= §ad(e2) oad(es) — §ad(63) o ad(es).

In particular, ¢r(ad(e1)) = itr(ad(ez) o ad(es) — ad(es) o ad(ez)) = 0. So, ad(e;)
has another eigenvector Y in H with eigenvalue —A. By rescaling and renaming if
necessary, we then have:

[62,63] 261
[63, 61] = )\63 .
[61, 62] = —>\€2
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Thus, g is isomorphic to

azo=((o %) (3 0)(0

Thus, G = SI(2, C) and hence is unimodular.
Case 2: rank(ad(e2)) =1
—ay —[
det =0,
¢ ( B2 P >

In this case,
yet one of the rows is non-zero. Let us assume that < B2 > # < 8 > . Then

Ol
N——
\/

Bs

(5 )=+(5):

so that —as = kB> = k?f35. Also,

(0) = (5" &) (5)
o) =\ s ks J\A

. B —k:(oq + k,@l)
- a1 + kpi ’

Thus, 0 = oy + kf;.
Hence, g has the following Lie algebra structure:

lea,e3] = 2e1 — kfiea +  Pies
les,e1] = k*Bses + —kfBses
[e1,e2] = —kBzes +  Pses.

with 83 # 0. Thus, [g,g] = (e1, —kea + e3). Clearly, if we choose ey and ez well
enough, we can assume k = 0. This will give us this Lie algebra structure:

[e2,e3] = 2e1 - pBies
[63, 61] = 0
[61; 62] = Baes.

Set fi1 = 2e1 + Pres, fs = PBzes. So, [g,8] = (f1, f3) - It is then easily checked that

[62,f1] = B1f1 - 2f3
le2, f3] = Bsfi ,
[fi,fs] = 0

so that, with respect to the basis {f1, f3}, ad(ez) on [g, g] is given by the matrix

w_( B B
T—<—12 03>'

The characteristic polynomial p(X) of T is given by p(X) = X2 — 3, X + 2. Let
~1 and 72 be the roots of p. We then have two possibilities:
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1. Y1 = VY2
2. ’)/1 75’)/2

Subcase 1: Suppose y1 =y = 7.
Then B; = —2v and ¥ = 233. Thus,

= -2y 1¥?
().

1
Set fo = ;62. Then with respect to {f1, f3}, ad(f2) on [g,g] is given by the matrix

-2 1y
r—( 2 ).
-2 0

The characteristic polynomial of this matrix is ¢(X) = (X — 1)2. Furthermore, the
eigenspace of ad(f2) corresponding to 1 is given by:

P (- (3 )

Finally, it is easily checked that
s ()30 =~ ()t (- (D) 5+ 5).

In particular, if we set

w =

v2 = fa

A

12

)f1+f3

)fl,

o2

then

[U17U2]
[v2,v3] = w1 +vs,

[Ul, U3] = 0.

VU1,

Furthermore,

3 4
v = —’7€1+§’7 es,

V2 = —€2,

V3 = 5’)/263.

Thus, H = (C¢,Cs) -
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Now, it easily checked that the Lie algebra given by

r r y+=z
g= 0 =z z rz,y,2 € C
0 0 0
satisfies the above criterion with
0 01
vy = 0 0 0],
0 0 O
110
vy = 01 0|,
0 0 O
0 01
vy = 0 0 1
0 0 O
Furthermore, having no center, the Lie group
et tel w
G = 0 e v |:tuveC
0 0 1

is the unique connected complex Lie algebra having gas its Lie algebra. Note that,
using {v1,v2,v3} as above, we have that tr(ad(v1)) = 1, meaning that G is not
unimodular (by theorem in [15])
Case 2 Suppose y1 # 7Va.

The characteristic polynomial p(X) of ad(es) is then given by p(X) = (X -y )(X —
V2), i.e. B1 =1 + 72 and 28 = y1y2.

Set fo = i62. Then, with respect to the basis {fi, f3}, ad(f2) on [g,g] is given

i1
by the matrix

MmEYY mn
2

T = m,
-Z 0

"N

The characteristic polynomial of this matrix is given by p(X) = (X — 1)(X — «),

where a = ﬁ. Furthermore, the eigenspaces of ad(f») are given by

o= (- () R 1) Bam (- (30

fi— (3> fs € E;
712
vy = —fi+ <—> fa€ By
V2

V3 = f2.

Set

U1
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Then

[vz,v1] = Wy

[vs,v2] = avy

[’1}1 5 ’UQ] = 0.

Finally, # = (Coo + Ce, Co) -

For any a € C, not equal to 1, define the action 7, : C — GI(2, C) by

—t
e
m< .

)
e—at .

Let G, = C x,. C? be the semi-direct product, whose multplication is given by

(tl,wl) . (tQ,’wQ) = (tl + t2,wy +Ta(t1)’w2) for t1,t2 € C, wy,wy € C2.

Set
=l ()
= a(0(0)),
= i 00)

Then it is easily checked that the Lie algebra g, of G, is given by g, = (v1,v2,v3)
that v1,v2, and vs satisfy the Lie brackets given in the previous paragraph. Lastly

note that
tr(ad(v1)) = 0
tr(ad(v2)) = 0
tr(ad(vs)) = a.
So, g, is unimodular if and only if & = —1, in which case G is the universal cover

of E(2,C), the space of rigid motions of the complex euclidean plane.

Case 3: rank(ad(e;)) =0

In this case, ay = 3 = B3 = 0, so that g is the Lie algebra given by:

le2,e3] = 2e
[63,61] = 0
[61, 62] = 0.

That is, G is the complex Heisenberg group.

Lemma 3.3 Suppose M is a three-dimensional complex-homogeneous complex con-
tact manifold with global complex contact form n. Then M = G /T for some complex
Lie group G with discrete subgroup I' C G such that G preserves n.
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Proof. Let G be a complex Lie group of complex-contactomorphisms of M whose
action on M is transitive. Let G = S X R be the Levi decomposition of G where S
is a semi-simple Lie group acting on a solvable group R via a representation f : S —
Aut(R). Then M = G /L for some closed subgroup L C G.
Case 1. Suppose G is semi-simple, i.e. R = (0).

By the proof of the theorem A on page 147 in [4], we know that being semi-simple,
G preserves the global contact form 7 and hence also dn. Setting p: G - M = G/L
to be the obvious submersion, we have the standard statements for this situation:

1. If w is a G-invariant form on G/L, then w* = p*(w) is an element of g* such
that:

(a) w*(1) =0,
(b) ad(zr)w* = w* for all z € 1.

2. Conversely from the above statements, any form in ¢g* satisfying conditions a)
and b) is the image under p* of a G-invariant form on G/L.

3. If w is a G-invariant form on G/L with w* = p*w, then (dw)* # 0 if and only if
(dw*)* # 0.

Let (,) denote the Killing-Cartan form of g. Then there exists a unique Z € g
such that w*(X) = (Z, X). Set ¢(Z) ={X € g:[X,Z] =0}. For any X,Y € g,

dw*(X,Y) = —%w*([X, Y))
1

= _§(Z7 [XvY])

1
= _5([Z7X]7Y)
So, ¢(X)dw* =0 if and only if [Z, X] = 0 (since (,) is nondegenerate). Hence, ¢(Z) =
{X € g:(X)dw* = 0}. Furthermore, 1 C ¢(Z).

Set N = dimgG so that dimgL = N — 3. We know that dw® # 0 and that
(dw*)?> = 0 by statement b) above. So, with respect to some dual basis {e],...,ex}
of g*, dw* = e} A e5, which means that c(Z) = (es,...,en)- ie. dimgpc(Z) =
dimgG — 2. Therefore, ¢(Z) =1® (Z) .

With respect to the nilpotent subalgebra (Z) C g, g has the root decomposition

g=(Z)colog,dg_,,
———
=8,
for nonzero root A € ((Z))*, where g, and g_, are the one-dimensional subspaces
of g satisfying:
L. [go,8)\] C 8,

2. [gg,g,)\] C g x>
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4. [gr,8_\IN(2) # (0).

Since both of the nonzero root spaces are one-dimensional, we can set g, = (X3)
and g_, = (X»). Then, for some a # 0 and W € [,

[Xl,X2] = aZ+W

[X1,Z] = AMZ2) X,
[X2, Z] = =\ (2)Xos.

Since [8g,&42] C 81y, we also know that there are some numbers p; and po such
that
[X1, W] = Xy,

(X2, W] = p2Xs.

However, an easy application of the Jacobi identity tells us that ps = —puy. Thus, by
adjusting and renaming the coefficients properly, we have

[X1,Z] = AX1, [X2,Z] = =M\ X,

[XI;XZ] =Z+W, [Z>W] =0,
(X1, W] = pXy, [Xo, W] = —pXo.

In particular, (X, X», Z, W) is a Lie subalgebra of g, and we can thus assume that
G is 4-dimensional with gas described above.

We also note that h = (Z, W) is a nilpotent subalgebra of g, which induces a root
space decomposition of g given by:

g=g9g, g ,,
where v € h* is given by the equations:
v(Z) =\, (W) = p,

andg, =h, g, =g,, g, =g_,. Thus, his a Cartan subalgebra of g. However, it is
known that for a Cartan subalgebra h, the set of nonzero roots A of h spans h* (For
reference, see [11]). In our case, the set of nonzero roots consists of {xv}, so that h*
is one-dimensional. Thus, L C G is a discrete subgroup, and the universal cover G of
M is a three-dimensional semi-simple Lie group.

Case 2. Suppose G is solvable, i.e. S = (0).

To prove the lemma for this case, we need to make use of the following proposition
due to Winkelmann [18].

Proposition 3.4. Let G be a solvable, connected Lie group acting transitively on
a complex manifold X with dimgX < 3. Then there exists a solvable, connected
complex Lie group K acting transitively on X with dimgK = dimcX.

Thus, in our situation, we know that M = K/I' for some solvable complex Lie
group K and some discrete subgroup I' C K. The problem is that it is not clear from
the proof of this proposition that the original complex contact structure is preserved
by this group K. In fact, in general, it won’t be. In order to remedy this, we will
construct a possibly new complex contact structure which is preserved by K.
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We assume that M = K. At e € M, we choose linearly independent vectors
XY € /Hix’ . We then extend these to form linearly independent holomorphic vector
fields in H°' near e. Also, let X’ and Y’ be the K-left-invariant holomorphic vector
fields on K given by X! = X., Y/ = Y. So, we have a K-left-invariant subbundle
H = (X", YV') in T-OM.

Both H*' and H' are 2-dimensional subspaces of a 3-dimensional vector space,
so that H>®' NH' # (/) at each point on M. Thus, we can assume that locally
H'NH = (X)), ie. X =X,

Since H°°' is a complex contact structure, we know that [X,Y] =W ¢ H>'. So,
{X,Y,W} is alocal holomorphic basis of T1:°M. Also, since we’re assuming X = X',
we can also assume that Y’ = Y + €W for some local holomorphic function € with
e(e) = 0. Furthermore,

(X, Y] - [X,Y] = [X,eW] = (Xe)W + [ X, W].

In particular, [X,Y"]e — [X, Y] = (Xe)(e)We. So, [X,Y']e € (W) . Since Hy = H>,
we see that [X,Y’] ¢ H'. But [X,Y'] and H' are both K-left-invariant structures on
M. So, [X,Y'] ¢ H' at all points on M. Thus, H' is a K-left-invariant complex contact
structure on M = K.

Case 3. Suppose G is mixed, i.e. S # (0) # R.

By Winkelmann’s list in [19], we know that all three-dimensional complex homoge-
neous manifolds in this category are C, C*, or C? bundles over complex homogeneous
manifolds. Let 7 : M — N be the corresponding bundle map in our case with struc-
ture group K C G. Since this map 7 preserves the actions of G on M and N, we know
that ker(m,) is G-invariant. Set H' = HN||]V(7m«). So, H' is a K-invariant subbundle
of M.

We have three possibilities:

L HM[[V (),
2. H C|1V(m),
3. HN|[TV(me) #0, but H & ||TV (7).

If (1) were true, then M would be a complex Boothby-Wang fibration over a
complex-homogeneous complex symplectic manifold, which as we have seen must be
a complex torus. In particular, the universal cover of M is the complex Heisenberg
group. If (2) were true, then by dimension-counting, H = |||V (m.). This is clearly
impossible, since the vertical subbundle of any submersion is integrable.

Finally, we come to case (3). There exists a K-connection D of the fibration M —
N such that H' =DNH # (/). Then H =H' &H". Let X € H',Y € H" be local K-
invariant vector fields. Then 7.(X) = 0, and 7.(Y") is a well-defined vector field on N.
Thus, [7.(X), 7 (V)] = m[X,Y] = 0. So, [X,Y] € ker(m.). This means that ker(m.)
is 2-dimensional. By Winkelmann’s list, then, we know that M is the C*-bundle over
CP! given by the transition functions:

n
20

w = —wol|—
21

np+n—2 np+n—1
_ 20 p+1 [ %0
V1 = U | — — Wy — .
<1 21
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Furthermore, although the subbundle V = (/) may not live in ker(m,), we can set
pr: TM — ker(m.) to be the holomorphic projection with respect to the holomorphic
splitting TM = ker(m.) ® D. Then we will have that U’ = pr(U) is a nowhere-zero
holomorphic vector field in ker (. ), which can be taken as a nowhere-zero holomorphic
section of M as a C>-bundle over CP'. This is a contradiction, since it is known that
this bundle has no holomorphic sections. Thus, we have proven our lemma.

4 Final remarks

Given a 3-dimensional complex contact manifold M with local complex contact forms
{w}, we can define a C*-bundle B over M locally by

B={fw:feC*} Cc A" M.

Let w : B — M be the projection. It is well-known that there exists a globally defined
1-form Q on B such that

1. (dQ)? # 0.
2. 2 = 0 on vectors tangent to the fibres created by the fibration B — M.
3. (R.)*Q = 2Q for all z € C*, where R, is the right-handed C*-action on B.

Finally, it also well-known that any contactomorphism of M determines a unique
biholomorphism of B which (1) commutes with right translations, and (2) pre-
serves (). Conversely, any biholomorphism of B satisfying these conditions deter-
mines a unique contactomorphism of M. For a given z € M and b € 7~ (z), set
L ={9eG:g9(x)=2} and Ly = {ge€ G:9(b) =b}. Then L; C L; and either
L =1L or L\L = C" All of these facts are documented in [4]. Tt is clear that
M has a global complex contact form if and only if B is holomorphically trivial.

Using this terminology, our main theorem gives us the following corollary.

Corollary 4.1 Let M be a three-dimensional complex contact manifold with transi-
tive group of holomorphic contactomorphisms G. If B is trivial, then (1) G preserves
each global complex contact form and hence (2) the subgroup of G preserving a fibre
of B over M acts trivially on that fibre.

This corollary allows us to extend one of Boothby’s results, using a similar proof as
he does in [4].

Theorem 4.2 Let M be a three-dimensional complex homogeneous complex contact
manifold with transitive group of holomorphic contactomorphisms G. Then there are
two possible cases:

1. The following equivalent statments hold:

(a) G is transitive on B;
(b) B is non-trivial as a bundle over M;
(¢) L\ L1 =C%
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2. The following equivalent statments hold:

(a) The subset of G preserving a fibre of B acts as the identity on that fibre;
(b) B is trivial as a bundle over M;
(C) L= Ll.
Boothby’s original theorem assumed that M was compact and simply-connected
and also that G was semi-simple. Furthermore, in [5], Boothby showed that under
these same circumstances, the second category in his theorem is null. It is unknown

to the author whether there are any known examples of manifolds in category (1)
which are not homogeneous twistor spaces.
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