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Abstract

We consider immersions of sets of manifolds with some defining relation
specified, expressed in terms of an intrinsic or extrinsic curvature condition, and
analyse the consequences and relationships among various curvature functions
this implies.
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1 Introduction

A first contribution concerns immersions of semisymmetric and Ricci - semisymmetric
manifolds as hypersurfaces in Euclidean spaces. The set of all manifolds which are
Ricci-semisymmetric and satisfy RS = 0 contains the set of manifolds which are
semisymmetric and satisfy R- R = 0 as a proper subset. However, considering only
those manifolds (M™, g) which can be immersed as a hypersurface in a Euclidean space
E"", one might ask whether this can lead to nonsemisymmetric Ricci-semisymmetric
hypersurfaces. This is commonly known as the Problem of P.J. Ryan, and has been an
open question since 1972. We discuss examples of Ricci-semisymmetric hypersurfaces
M™ of E"! (n > 5) which are not semisymmetric; this provides an answer to the
Problem of P.J. Ryan.

Next, we consider conformally flat hypersurfaces of E*. In contrast to hypersur-
faces of Euclidean spaces in all other dimensions, in this particular case there do exist
conformally flat hypersurfaces which are not quasi-umbilical. Such hypersurfaces al-
low introducing a special type of coordinates such that the coordinate lines coincide
with the curvature lines; they are called Guichard coordinates. In this context we dis-
cuss 2 theorems on 3-dimensional conformally flat hypersurfaces: a conformally flat
hypersurface M3 of E* with constant mean curvature H, and having 3 different prin-
cipal curvatures, must be minimal; for a conformally flat hypersurface M3 of E* with
constant Gauss-Kronecker curvature 7, and having 3 different principal curvatures,
the value of 7 must be equal to zero.
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Finally, we turn our attention to certain generalisations of minimal submanifolds.
In the context of B.-Y. Chen’s theory of submanifolds of finite type, the set of min-
imal submanifolds is contained in larger classes of submanifolds, e.g. the classes of
submanifolds of finite type, coordinate finite type, and restricted type, amongst oth-
ers. In this framework, we consider the submanifolds with harmonic mean curvature,
or equivalently the biharmonic submanifolds (A2# = 6), and their generalisations
defined by the requirement that the mean curvature vector is an eigenvector of the
Laplacian AH = MH. We discuss the following 2 theorems: every hypersurface M3 of
E* with harmonic mean curvature vector field is minimal; a hypersurface M3 of E*
satisfying AH = \H must necessarilly have constant mean curvature.

2 The problem of P.J. Ryan

A semi-Riemannian manifold (M",g), n = dim M > 3, is called semisymmetric if
(1) R-R=0

holds on M. It is well known that the class of semisymmetric manifolds includes the
set of locally symmetric manifolds (VR = 0) as a proper subset.

A semi-Riemannian manifold (M™,g), n > 3, is said to be Ricci-semisymmetric,
if the following condition is satisfied

2) R-S=0.

Again, the class of Ricci-semisymmetric manifolds includes the set of Ricci-symmetric
manifolds (VS = 0) as a proper subset. It is clear that every semisymmetric manifold
is Ricci-semisymmetric. The converse statement is however not true.

Although the conditions (1) and (2) do not coincide for manifolds in general, there
has been a long standing question:

Question 2.1. Are the conditions R-R = 0 and R-S = 0 equivalent for hypersurfaces
of Euclidean spaces ?

This question has been first raised by P.J. Ryan in 1972 (cfr. Problem P 808 of
[18] and references therein), and has been an open problem ever since. Question 2.1
is commonly refered to as the Problem of P.J. Ryan.

Whereas the conditions R- R = 0 and R-S = 0 are equivalent on any 3-dimensional
manifold, for n > 3 we have the following results. It had been proved in [20] that (1)
and (2) are equivalent for hypersurfaces which have positive scalar curvature in a
Euclidean space E"™!' n > 3. In [17] this result was generalized to hypersurfaces of
a BEuclidean space E™™', n > 3, which have nonnegative scalar curvature and also
to hypersurfaces of constant scalar curvature. [17] also proves that (1) and (2) co-
incide for hypersurfaces of Riemannian space forms with nonzero constant sectional
curvature. Further, in [16] it was proved that (1) and (2) are equivalent for hyper-
surfaces of a Euclidean space E"™! n > 3, under the additional global condition of
completeness. In [8], it has been shown that the conditions (1) and (2) are equivalent
for hypersurfaces of the Euclidean space E°.

In [6] a negative answer to Question 2.1 was given for hypersurfaces of a Euclidean
space "™ n > 5. Indeed, [6] gives an example of a hypersurface M> of E°® which
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satisfies R-S = 0, but which is not semisymmetric. The existence of such a hypersur-
face M? of E® which is Ricci-semisymmetric, but does not fulfill R- R = 0, is recalled
in Theorem 2.1 here below. This proves that the conditions R-R=0and R-5 =0
are not equivalent for hypersurfaces of Euclidean space in general, thus solving the
Problem of P.J. Ryan.

W.r.t. a local orthonormal frame {e;}?, which diagonalises the shape operator A,
with principal curvatures \;(i = 1, ...n), the only nonzero components of the Riemann-
Christoffel curvature tensor are

Rijji = A, i#£j, 1<i,j<n,

and the Ricci tensor is diagonal S;; = /\,(Z Aj).
i#]
The set of equations for R- R =0 (1) amounts to:

Analogously, the set of equations for R -S = 0 (2) amounts to:

(4) AX =) [ > A =0, i#j, 1<i,jk<n.
ki, k#j

We remark that a solution of (3) is indeed automatically a solution of (4). Theorem
2.1 proves that there exists a 5-dimensional hypersurface of E®, for which the principal
curvatures are a solution of (4), but do not satisfy (3).

Theorem 2.1. There exists an isometric immersion of a 5-dimensional manifold M®
into ES with a metric

ds?> = € ((da")® + cos® p(z2, 43) (dz?)?
(5) + sin? ¢(z?, 2%)(dz®)? + cos® ¢ (z*, 2°) (dz*)?
+ sin® ez, 2°)(d2®)?)
and principal curvatures (0,b,b, —b, —b); where
(6) b(at) =e ",
and ¢ and Y are a solution of the equation

0? 0? .
(7) ﬁ - ﬁ = —sin(2(),
for (i,7) = (2,3), and (4,5), respectively. M® satisfies R-S = 0, but is not semisym-
metric.

This result was generalized in [7], where it was proven that Ricci-semisymmetric
hypersurfaces M" which are not semisymmetric exist in Euclidean spaces E"™* for all
dimensions n > 5. The existence of the immersions of M" in E™™ for which R-S = 0
but R- R # 0, relies on the (complete) integrability of a system of partial differential
equations of Bourlet type. In particular [7] thus show that the example of Theorem
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2.1 is not an isolated case, but belongs to an infinite family of which it is the simplest
representative. The construction for all dimensions n > 5 of nontrivial hypersurfaces
M™ of E™! for which R-S =0 but R - R # 0 relies on Theorem 2.2 here below. The
approach identifies links with the theory of completely integrable systems, and thus
gives insight into the nonlinearity underlying the geometry.

Theorem 2.2. There exists an isometric immersion of the n-dimensional manifold

M(”1 o) with ¢ > 3, r >3, and g+ + 1 = n, into "' with the metric

g+1
ds? = e2hat ((dml)Z +32Zli2(x2,---,$q+1)(dmi)2
(®) =
+ 02 Z li2(xn_r+17 e ’xn)(dml)2> )

and principal curvatures,
M=0,h=(1-rfe ™ 2<i<q+1), hi=—(1-q)fe "™ (n—r+1<i<n).

The parameters h, 8, B, and C are related by the following conditions

(9) 1-q)(1—-r)p> =1,

(10) (W + (1= r)?6?) B2 = 1,

(11) (P* +(1-q)?8%) C* =1,

and the functions {l;(z®*t, ... zotm) fjﬂ_l are a solution of the completely inte-

grable system

i | O o .
(12) %*‘%‘F Z Yeive; +lil; =0 (a+1<i,j <a+m)(i#j),
k#i,k#]
Mk . . .
(13) or = YjiYik (a+1§l,],k§a+m)(l7§],]#k,k#l),
with
10 . .,
(14) Yii = T i (a+1<i,j<a+m)(i#j),

and for (a,m) = (1,q), and (a,m) = (¢+1,r), respectively. M(’i’w) satisfies R-S = 0,
but is not semisymmetric.

It is now clear how to construct genuine Ricci-semisymmetric nonsemisymmetric
hypersurfaces of all Euclidean spaces E"*! (n > 5) corresponding to all possible
(p,q,7), thus with p > 0,¢ > 1,7 > 1 and p+ ¢+ r = n. First, when p > 1,
take a product immersion in E"*!' of EP™! with a hypersurface M, g_qu)l of EnPH2,
if both ¢ > 3 and r > 3, Theorem 2.2 proves the existence of this hypersurface
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Mg;pgl of E""P™2 When e.g. ¢ = 2, then i, j, k range over only 2 possible values,

and consequently equations of the type (13) cannot occur. For the same reason (12)
gives only 1 single equation. If we make the Ansatz

(15) lo(z?,23) = cos p(x?, %),

(16) Iy (52,0%) = sin §(s2,2%),
the remaining Gauss equation (12) turns into

82¢ 82¢

(0x2)%  (0x%)?

(17) = —sin(g).
This is the sine Gordon equation and essentially (upon adjustment of the nor-

malisation, which is conventional) the equation which was encountered in Theorem
2.1.

3 Conformally flat hypersurfaces

Let (M™, g) be an n-dimensional Riemannian manifold of class C*. (M™, g) is called
conformally flat if every point has a neighborhood which is conformal to an open set
in the Euclidean space E". Or, equivalently, (M", g) is conformally flat if there exists
locally a function w such that e%g is a flat metric.

For 2-dimensional manifolds, the existence of isothermal coordinates shows that
every surface is conformally flat. For manifolds of dimension n > 4, the necessary
and sufficient condition for conformal flatness is given by the vanishing of the Weyl-
conformal curvature tensor. The Weyl conformal curvature tensor C' involves second
order derivatives of the metric tensor, and is defined as

C(X,Y,Z,U)=R(X,Y,Z,U) + ﬁ (n i 1 (9(Y,Z2)g(X,U) — g(X, Z)g(Y,U))

- (S(Y>Z)9(X>U) _g(X)Z)S(Ya U)) - (Q(Y, Z)S(X>U) - S(Xv Z)g(Ya U))) :

In dimension n = 3, however, the criterium for conformal flatness is that the Schouten
tensor is a Codazzi tensor; this condition involves third order derivatives of the metric.
The Schouten tensor T' is defined (for an n-dimensional manifold) as

1 K
TX,)Y)=— [ S(X,)Y)— —g(X,Y) ] .
(V) = g (S007) - 5t
Equivalently, this can be formulated as the vanishing of the Bach tensor, B = 0, where

B(X,Y,Z)= (VxT)(Y,Z) - (VyT)(X,Z).

In particular, for hypersurfaces M™ of a Euclidean space E"*!, we have in dimen-

sions n > 4 a classical (and often reproved) result by Cartan-Schouten. The induced
metric of a hypersurface M™ of E"*! (n > 4) is conformally flat if and only if at least
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n—1 of the principal curvatures coincide at each point, if and only if it is “quasi umbil-
ical”. Whence, in dimensions n > 4, a conformally flat hypersurface can have at most
2 different principal curvatures at each point. This condition is conformally invariant
as the following characterization shows more clearly: as quasi umbilic hypersurfaces,
conformally flat hypersurfaces of dimension n > 4 are “channel hypersurfaces”, i.e.
envelopes of 1-parameter families of hyperspheres. As such, they are foliated with
(n — 1)-spheres.

In dimension n = 3, the result of Cartan-Schouten does not longer hold in it’s full
generality: still, channel hypersurfaces are conformally flat, but there are examples
of conformally flat hypersurfaces with three distinct principal curvatures showing
that the channel hypersurfaces form only a strict subclass of the conformally flat
hypersurfaces. Indeed, [15] has given examples of conformally flat hypersurfaces with
exactly 3 different principal curvatures. Recently, [12] described more examples of such
conformally flat hypersurfaces. For example, “conformal product hypersurfaces” over
surfaces of constant Gauss curvature — cones over constant Gauss curvature surfaces
in S3, cylinders over constant Gauss curvature surfaces in E®, and hypersurfaces of
revolution over constant Gauss curvature surfaces in the hyperbolic half space H3 —
are conformally flat and have generically three different principal curvatures [12] [13].
In spite of this interesting phenomenon with 3 different principal curvatures, there
are not so many particular results for 3-dimensional conformally flat hypersurfaces
of E*. This is perhaps mainly due to the fact that the condition with the Schouten
tensor keeps its nature of a set of coupled partial differential equations of third order.

Cartan gave the following characterization for 3-dimensional conformally flat hy-
persurfaces M3 of E*: consider the six (complex) 2-dimensional distributions of planes
in T M where the second fundamental form is a multiple of the first fundamental form
(umbilical distributions). M? of E* is conformally flat if and only if these distributions
are integrable.

Another criterium, closely related to Cartan’s, was given in [13]: a hypersurface
in M3 of E* is conformally flat if and only if the “conformal fundamental forms”

ar = vV =M VA — Xw
az =V — VA — Azws
(13:\/>\2—/\3\/>\3—/\1w3

are integrable (closed). Here, w; : TM? — E denote the first fundamental forms with
respect to a principal curvature frame and ); : M> — E denote the principal curva-
tures of M3. Note, that these forms are conformally invariant. As a consequence, each
conformally flat hypersurface (with distinct principal curvatures) carries principal
curvature line coordinates (z',z2,2%) : M® — E*. Indeed, [12] proves the following
structural theorem:

Theorem 3.1. If M3 is a conformally flat hypersurface of E* with 3 different principal
curvatures, then the curvature lines form a “Guichard net”, i.e. there are principal

curvature line coordinates (z', 2%, 2%) : M® — E* such that

(18) 0=10+1,> -1

for the metric coefficients

3
9= 1 (da')’.
i=1
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This gives a necessary condition for a non-quasi-umbilical hypersurface of E* to
be conformally flat. Whether this condition is also sufficient, is still an open problem;
at least no counterexamples are known.

Such a Guichard curvature line net can be considered as a 3-dimensional analog of
isothermic curvature line coordinates on surfaces: thus, every conformally flat hyper-
surface M? of B is an “isothermic hypersurface”. Therefore, concerning the converse
of Theorem 3.1 which is still open and does not seem easy to decide, one can formulate
the following;:

Conjecture 3.1. Every “isothermic hypersurface” M? of E* is conformally flat.

On the other hand, mapping the Guichard curvature line net of a conformally flat
hypersurface into E® via conformal coordinates yields a Guichard net in E*. Up to
conformal transformations, the hypersurface can be uniquely reconstructed from the
Guichard net in E® [12], [13].

In order to gain more insight into the above conjecture — to decide whether it
is true or not — it would be desirable to have more explicit results and examples of
conformally flat hypersurfaces in EL.

We have e.g. the result of [10] classifying the conformally flat hypersurfaces of E*
whose mean curvature vector H is an elgenvector of their Laplacian, i.e. AH = \H.
In view of [3], a hypersurface M? of E* satisfying AH = \H, has both constant mean
curvature and constant scalar curvature. From the results in [3] and [10] combined,
one thus deduces that a conformally flat hypersurface M3 of E* with constant mean
curvature and constant scalar curvature is locally an open part of a plane, a cylinder
Sk x B3k (k =1,2), or a hypersphere; in all cases the hypersurface is isoparametric.

In [4] and [5] we look for information on conformally flat hypersurfaces of E* with 3
different principal curvatures and one of the generalized curvatures being constant. In
[4], we consider conformally flat hypersurfaces M? of E* with constant mean curvature
and prove the following
Theorem 3.2. A conformally flat hypersurface M? of E* with constant mean cur-
vature and having 3 different principal curvatures at every point must be a minimal
hypersurface.

In [5], we consider 3-dimensional conformally flat hypersurfaces of E* with con-
stant Gauss-Kronecker curvature and prove the following
Theorem 3.3. For a conformally flat hypersurface M?> of E* with constant Gauss-
Kronecker curvature T and 8 different principal curvatures, the value of this constant
T must be zero.

The following example shows that conformally flat hypersurfaces M? with 3 dif-
ferent principal curvatures and having constant (zero) mean curvature and constant
(zero) Gauss-Kronecker curvature do really exist.

Example 3.1. The manifold M? equiped with the metric g, given by

g= e ((dy")? + (dy*)? + (dy®)?) ,

can be immersed into E* with the following shape operator

M 0 0
S=1 0 x o0 |,
0 0 X

where the principal curvatures are given by
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1

(19) )\1 = 0,)\2 = e_yl ,)\3 =—e Y.

4 Biharmonic hypersurfaces

The submanifolds of finite type [1] constitute a class of submanifolds generalizing the
well known minimal submanifolds. Another line of thought, closely related however
to the above one, leads to the biharmonic submanifolds, and the manifolds satisfying
AH = \H. For this discussion, we restrict ourselves to a Euclidean ambient space.

Let therefore M™ be an n-dimensional, connected submanifold of the Euclidean
space E™. Denote by &, H , and A respectively the position vector field of M™, the
mean curvature vector field of M™, and the Laplace operator on M"™, with respect to
the Riemannian metric g on M™, induced from the Euclidean metric of the ambient
space E™. Then, as is well known,

(20) AZ=—nH.

This shows, in particular, that M™ is a minimal submanifold of E™ if and only if its
coordinate functions are harmonic (i.e. they are eigenfunctions of A with eigenvalue
0):

(21) H=0 < AZ=0.

This condition (21) can be generalized in several directions. T. Takahashi [19] studied
and classified submanifolds in Euclidean space for which

(22) AT = AT, A€R,

i.e. submanifolds for which all coordinate functions are eigenfunctions of A with the
same eigenvalue A. Rephrased in terms of B.-Y. Chen’s theory of submanifolds of
finite type [1], Takahashi’s condition (22) characterizes the 1-type submanifolds of
E™.

Another direction, generalizing the condition (21), was taken by B.-Y. Chen, who
initiated in 1985 the study of submanifolds of E™ satisfying

(23) AH=0.

A submanifold M™ of E™ satisfying this condition (23) is said to have harmonic
mean curvature vector field. In view of (20), submanifolds with harmonic mean cur-
vature vector field are equivalently characterized by the condition
(24) A2E=0.

Therefore, submanifolds satisfying (23) are also called biharmonic submanifolds.

Both Takahasi’s condition (22), and the condition (23), are generalized and com-
bined into the condition

(25) AH=XH, XeR.

For submanifolds satisfying (25), the mean curvature vector H is thus an eigenvector
of the Laplacian.

We can summarize the inclusions between the different conditions (21), (22), (23),
and (25) in the following table:
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AH=0 c AH=)H

U

C

8
[l

>
8

H=0 c A

Introducing a local orthonormal frame {e;}?_,, the Laplace operator A acting on a
vector valued function V', is given by

(26) AV = Z (VoooV = VeV 7).
i=1

With (26), we find the following necessary and sufficient conditions for a hypersurface
M?3 of E* to satisfy (25):

(27) avm =-2Lwm,
(28) AH + HtrA* = \H A€ER,

where the Laplace operator A acting on a scalar valued function f, is given by

3

(29) Af = Z(veieif —eieif) .

i=1

With A = 0, the case of a biharmonic hypersurface M3 of E* is recovered as a special
case.

As remarked, minimal submanifolds are immediately seen to be biharmonic. Con-
versely, the question arises whether the class of submanifolds with harmonic mean
curvature vector field is essentially larger than the class of minimal submanifolds.
Otherwise stated, we consider the problem to classify the biharmonic submanifolds of
E™, other than the minimal ones. For a survey of this and related problems, see e.g.
[1]. Concerning this problem B.-Y. Chen conjectured the following
Conjecture 4.1. The only biharmonic submanifolds of Euclidean spaces are the min-
1mal ones.

Concerning biharmonic submanifolds in Euclidean spaces, we have the following
results, which support the above mentioned conjecture. B.-Y. Chen proved in 1985
that every biharmonic surface in E?® is minimal. Thereafter, I. Dimitri¢ generalized
this result [9] and proved that a biharmonic submanifold M™ of a Euclidean space E™
is minimal if it is one of the following: (a) a curve, (b) a submanifold with constant
mean curvature, (c) a hypersurface with at most two distinct principal curvatures,
(d) a pseudo-umbilical submanifold of dimension n # 4, (e) a submanifold of finite
type. Th. Hasanis and Th. Vlachos proved [11] that every biharmonic hypersurface
in B! is minimal.

In [2], we give an alternative proof of this last theorem by a different method. We
summarize the main differences between the approach in [11] and the line of proof
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in [2]: [11] first classifies explicitely the H-hypersurfaces in E*, therefore introducing
coordinates. Afterwards, the biharmonic hypersurfaces are singled out, invoking the
use of a computer for lengthy calculations, concluding that there are none besides
the minimal ones. Unfortunately, the possibilities for generalizing this method seem
rather remote.

In our proof in [2], we proceed in an entirely coordinate independent way and
with purely analytical arguments, avoiding the use of a computer. This makes the
proof more concise. However, the main advantage of our approach, as we see it, is
that it gives insight in the structure of the hypersurface and opens perspectives for
generalization to higher (co)dimensions.

Finally, let us remark that [11] contains complementary information which, al-
though not needed in [2], is of independent interest.

Summarizing, [2] gives a new proof of the following
Theorem 4.1. Every hypersurface of E* with harmonic mean curvature vector field,
s minimal.

The study of submanifolds of E™ satisfying (25) was initiated by B.-Y. Chen in
1988. A general implicit classification theorem for submanifolds of a Euclidean space
which satisfy the condition AH = \H for some A € R was obtained: a submanifold
M™ of E™ satisfies (25) if and only if

(i) either M™ is biharmonic (A = 0),
(i) or M™ is of 1-type,
(iii) or M™ is of null 2-type.

However, only for surfaces in E* a complete classification of the surfaces satisfying
the condition (25) has been achieved:

A surface M2 in E? satisfies the condition AH = AH for some \ € R if and only
if M? is either minimal (A = 0), or M? is an open part of one of the following: a
round 2-sphere S(r), or a cylinder over a circle S'(r) x E',

Concerning hypersurfaces of E*, [10] classifies the hypersurfaces satisfying (25)
which are conformally flat:

A conformally flat hypersurface M? in E* satisfies the condition AH = \H for
some A\ € R if and only if M3 is either a minimal hypersurface (A = 0), or M? is
an open part of one of the following: a round 3-sphere S%(r), a cylinder over a circle
S'(r) x E?, or a cylinder over a 2-sphere S%(r) x E*.

From this and other partial results, one may remark that all known examples of

hypersurfaces of E* which satisfy (25), have constant mean curvature. In [3] we prove,
without any additional assumptions, that this is a property which holds in general.
More precisely, we prove the following
Theorem 4.2. A hypersurface of B satisfying AH = \H must necessarilly have
constant mean curvature.
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