Beitr\ EMIS ELibM Electronic Journals Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Vol. 49, No. 1, pp. 33-57 (2008)

Previous Article

Next Article

Contents of this Issue

Other Issues

ELibM Journals

ELibM Home



A geometric embedding for standard analytic modules

Tim Bratten

Facultad de Ciencias Exactas, UNICEN, Paraje Arroyo Seco, Tandil, Argentina, e-mail:

Abstract: In this manuscript we make a general study of the representations realized, for a reductive Lie group of Harish-Chandra class, on the compactly supported sheaf cohomology groups of an irreducible finite-rank polarized homogeneous vector bundle defined in a generalized complex flag space. In particular, we show that the representations obtained are minimal globalizations of Harish-Chandra modules and that there exists a whole number q, depending only on the orbit, such that all cohomologies vanish in degree less than q. The representation realized on the q-th cohomology group is called a standard analytic module. Our main result is a geometric proof that a standard analytic module embeds naturally in an associated standard module defined on the full flag space of Borel subalgebras. As an application, we give geometric realizations for irreducible submodules of some principal series representations in case the group is complex.

Full text of the article:

Electronic version published on: 26 Feb 2008. This page was last modified: 28 Jan 2013.

© 2008 Heldermann Verlag
© 2008–2013 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition