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Abstract. We introduce the notion of a well centered spherical quadrangle or
WCSQ for short, describing a geometrical method to construct any WCSQ. We
shall show that any spherical quadrangle with congruent opposite internal angles
is congruent to a WCSQ. We may classify them taking in account the relative
position of the spherical moons containing its sides. Proposition 2 describes the re-
lations between well centered spherical moons and WCSQ which allow the refereed
classification.

Let L be a spherical moon. We shall say that L is well centered if its vertices belong to the
great circle S2 ∩ {(x, y, z) ∈ IR3 : x = 0} and the semi-great circle bisecting L contains the
point (1, 0, 0).
If L1 and L2 are two spherical moons with orthogonal vertices then L1 and L2 are said

to be orthogonal.
Let us consider the class Ω of all spherical quadrangles with all congruent internal angles

or with congruent opposite internal angles.

Proposition 1. Q ∈ Ω if and only if Q has congruent opposite sides.

Proof. It is obvious that any spherical quadrangle, Q, with congruent opposite sides is an
element of Ω.
Suppose now, that Q is an arbitrary element of Ω. Then Q has congruent opposite

internal angles say, in cyclic order, (α1, α2, α1, α2), with αi ∈ (0, π), i = 1, 2, α1 + α2 > π.
Lengthening two opposite sides of Q we get a spherical moon, L, as illustrated in Figure 1.
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Figure 1

The moon L includes Q and two spherical triangles, T1 and T2. As T1 and T2 have congruent
internal angles, they are congruent, and so the sides of Q common to respectively T1 and
T2 are congruent. The result now follows applying the same reasoning to the other pair of
opposite sides of Q.

Proposition 2. Let L1 and L2 be two well centered spherical moons with distinct vertices of
angle measure θ1 and θ2, respectively and let Q be the spherical quadrangle Q = L1∩L2. Then
Q has internal angles and sides in cyclic order of the form, (α1, α2, α1, α2) and (a, b, a, b),
respectively. Moreover, L1 and L2 are orthogonal if and only if α1 = α2, and θ1 = θ2 if and
only if a = b.

Proof. Let L1 and L2 be two well centered spherical moons with distinct vertices of angle
measure θ1 and θ2, respectively. L1 and L2 divide the semi-sphere into 8 spherical triangles,
labelled as indicated in Figure 2, Ti, i = 1, . . . , 8 and a spherical quadrangle Q = L1 ∩ L2.
Let E and N be vertices of L1 and L2, respectively, α1, α2, α3, α4 and a, b, c, d be, respec-

tively, the angles and sides of Q in cyclic order (see Figure 2).

Figure 2

The triangles T5 and T6 are congruent (it is enough to verify that they have one congruent
side and two congruent angles) and so α1 = α3. Also T7 and T8 are congruent and so α2 = α4.
Since T5 and T6 are congruent and T7 and T8 are congruent we may conclude that T1 and T2
are congruent as well as T3 and T4 and so a = c and b = d.
Now, θ1 = θ2 if and only if T1 and T4 are congruent, that is, if and only if a = b.
Besides, L1 and L2 are orthogonal iff E ·N = 0, where · denotes the usual inner product

in IR3, iff T6 and T7 are congruent iff α1 = α2.
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Corollary 1. Using the same terminology as before one has
i) If θ1 = θ2 and E ·N = 0 then Q = L1∩L2 has congruent internal angles and all congruent

sides;

ii) If θ1 = θ2 and E ·N 6= 0 then Q = L1 ∩L2 has all congruent sides and distinct congruent
opposite pairs of angles;

iii) If θ1 6= θ2 and E · N = 0 then Q = L1 ∩ L2 has congruent internal angles and distinct
congruent opposite pairs of sides;

iv) If θ1 6= θ2 and E ·N 6= 0 then Q = L1∩L2 has distinct congruent opposite pairs of angles
and distinct congruent opposite pairs of sides.

By a well centered spherical quadrangle (WCSQ) we mean a spherical quadrangle which is
the intersection of two well centered spherical moons with distinct vertices.

Proposition 3. Let Q be a spherical quadrangle with congruent internal angles, say α ∈
(π
2
, π), and with congruent sides, a. Then a is uniquely determined by α.

Proof. The diagonal of Q divides Q in two congruent isosceles triangles of angles (α, α
2
, α
2
).

Thus, if a is the side of Q one has

cos a =
cos α

2
(1 + cosα)

sin α
2
sinα

=
1 + cosα

1− cosα

We can observe that this relation defines an increasing continuous bijection between α ∈
(π
2
, π) and a ∈ (0, π

2
).

Proposition 4. Let Q be a spherical quadrangle with congruent internal angles, say α ∈
(π
2
, π), and with congruent sides. Then Q is congruent to a WCSQ.

Proof. Let Q be a spherical quadrangle with congruent internal angles, α ∈ (π
2
, π), and with

all congruent sides.
Consider two spherical moons well centered and orthogonal, L1 and L2 with the same

angle measure θ ∈ (0, π) such that cos θ = 2 cosα + 1 and Q? = L1 ∩ L2, see Figure 3. Let
us show that Q is congruent to Q?. By Corollary 1, Q? has congruent internal angles and
congruent sides.

Figure 3

Denoting by α? ∈ (π
2
, π) the internal angle of Q? one has,

cosα? = − cos2
(π − θ)

2
+ sin2

(π − θ)

2
cos
π

2
= − sin2

θ

2
=
cos θ − 1

2
= cosα
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Thus α = α? and consequently Q and Q? are congruent, since they have internal congruent
angles and by the previous proposition they also have congruent sides. It should be pointed
out that the relation cos θ = 2 cosα + 1 defines an increasing continuous bijection between
α ∈ (π

2
, π) and θ ∈ (0, π).

Proposition 5. Let Q be a spherical quadrangle with congruent internal angles, say α ∈
(π
2
, π), and with distinct congruent opposite pairs of sides, say a and b. Then anyone of the

parameters α, a or b is completely determined by the other two.

Proof. Let Q be a spherical quadrangle in the above conditions. For α ∈ (π
2
, π) and a ∈

(0, π), b is determined by the system of equations:

{
cos b = cos2 (π−a)

2
+ sin2 (π−a)

2
cos θ

cos θ = − cos2(π − α) + sin2(π − α) cos b

where θ is the angle indicated in Figure 4.
Therefore,

cos b = −1 +
2

1 + cot2 a
2
cos2 α

Figure 4

In a similar way, a can be expressed as a function of b and α.
We shall show in next lemma that α can also be expressed as a function of a and b.

Lemma 1. Let Q be a spherical quadrangle with distinct congruent opposite pairs of sides,
say a and b and with congruent internal angles, say α. Then

cosα = − tan
a

2
tan
b

2

Proof. Let Q be a spherical quadrangle in the above conditions. Lengthening the vertices of
two adjacent edges, one gets two isosceles triangles with sides a, π−b

2
, and b, π−a

2
respectively,

see Figure 5.
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Figure 5

Let θ1 and θ2 be the internal angle measure of these triangles, see Figure 5. Then

cosα = − cos
π − θ1
2
cos
π − θ2
2
+ sin

π − θ1
2
sin
π − θ2
2
cos
π

2
= − sin

θ1

2
sin
θ2

2
.

On the other hand,

cos θ1 =
cos a− cos2 π−b

2

sin2 π−b
2

=
cos a− sin2 b

2

cos2 b
2

and

cos θ2 =
cos b− cos2 π−a

2

sin2 π−a
2

=
cos b− sin2 a

2

cos2 a
2

.

Thus

cosα = −

√
1− cos θ1
2

√
1− cos θ2
2

= − tan
a

2
tan
b

2
.

Proposition 6. Let Q be a spherical quadrangle with congruent internal angles, say α ∈
(π
2
, π) and with distinct congruent opposite sides, say a ∈ (0, π) and b = b(a, α). Then Q is

congruent to a WCSQ.

Proof. Suppose that Q is a spherical quadrangle in the above conditions. We shall show that
for two orthogonal well centered moons of angle measure, respectively, θ1 and θ2, the unique
solution of the system of equations,

{
cosα = − sin θ1

2
sin θ2

2

cos a = cos θ1+cos2 α
sin2 α

(1)

defines a well centered quadrangle (the moon’s intersection) congruent to Q. In fact if a
such well centered quadrangle exists then by Corollary 1 it has to be the intersection of two
orthogonal moons L1 and L2 of angles θ1 ∈ (0, π) and θ2 ∈ (0, π), respectively.
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Figure 6

With the Figure 6 annotation, one has

cosα = − sin
θ1

2
sin
θ2

2
,

as we have seen before. And

cos a =
cos θ1 + cos

2(π − α)

sin2(π − α)
=
cos θ1 + cos

2 α

sin2 α
.

It is a straightforward exercise to show that the system of equations (1) has a unique solution
and that L1 ∩ L2 is congruent to Q. Observe that θ1 ∈ (0, π), where the cosine function is
injective and θ2

2
∈ (0, π

2
), where the sine function is also injective.

Remark 1. Let α : (0, π)× (0, π)→ (π
2
, π) and a : (0, π)× (0, π)→ (0, π) be such that

α(θ1, θ2) = arccos(− sin
θ1

2
sin
θ2

2
) and a(θ1, θ2) = arccos

cos θ1 + sin
2 θ1
2
sin2 θ2

2

1− sin2 θ1
2
sin2 θ2

2

.

The contour levels of α and a are illustrated in Figure 7 (done by Mathematica).
We may observe that the intersection of any two contour levels of α, and a determine

a unique pair of angles (θ1, θ2) ∈ (0, π) × (0, π), which means that a spherical quadrangle
in the conditions of the last proposition is congruent to a well centered spherical quadrangle
(the intersection of two orthogonal well centered spherical moons of angles θ1 and θ2).

Figure 7
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Proposition 7. Let Q be a spherical quadrangle with all congruent sides, say a ∈ (0, π
2
)

and with congruent opposite angles, say α1, α2, α1 ≥ α2. Then α1 ≥ arccos(1−
2

1+cos a
) and

anyone of the parameters a, α1 and α2 is completely determined by the other two.

Proof. Suppose that Q is in the above conditions.
1. If α1 = α2 = α then as seen in proposition 3, cos a =

1+cosα
1−cosα , that is, cosα = 1−

2
1+cos a

;

2. If α1 > α2 then a continuity argument allows us to conclude that α1 > arccos(1 −
2

1+cos a
) > α2. This can be seen dragging two opposite vertices of Q along the diagonal

of Q containing them, see Figure 8.

a

a a

a

a a

a a

a

a

a

a

a2
a1

a1
a2

Figure 8

Now, given a and α1, α2 is completely determined by the system of equations,

{
cosα2 = − cos2

α1
2
+ sin2 α1

2
cos l

cos l = cos2 a+ sin2 a cosα2

where l denotes the diagonal of Q bisecting α1, see Figure 9.

Figure 9

Thus,

cosα2 = 1−
2

1 + tan2 α1
2
cos2 a

and cos a = cot
α1

2
cot
α2

2
.

Proposition 8. Let Q be a spherical quadrangle with all congruent sides, say a ∈ (0, π
2
)

and with congruent opposite pairs of angles, α1, α2, α1 > α2, with α2 = α2(α1, a) and
α1 > arccos(1−

2
1+cos a

). Then Q is congruent to a WCSQ.
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Proof. Let Q be a spherical quadrangle as indicated above. Let us show first that when two
well centered spherical moons with congruent angles, say θ, and π

2
− x, x ∈ (0, π

2
) as the

angle measure between them, then the following system of equations

{
cosα1 = − sin

2 θ
2
− cos2 θ

2
sin x

cos a = cos θ+cosα1 cosα2
sinα1 sinα2

has a unique solution which defines a WCSQ congruent to Q.
As seen in Corollary 1, if such well centered spherical quadrangle exists then it has to be

the intersection of two well centered spherical moons with congruent angles θ ∈ (0, π), and
such that the angle measure between them is π

2
− x, x ∈ (0, π

2
), see Figure 10.

Figure 10

With the labelling of Figure 10 one has,

cosα1 = − cos
2 π − θ

2
+ sin2

π − θ

2
cos(
π

2
+ x) = − sin2

θ

2
− cos2

θ

2
sin x

and on the other hand,

cos a =
cos θ + cos(π − α2) cos(π − α1)

sin(π − α2) sin(π − α1)
=
cos θ + cosα1 cosα2
sinα1 sinα2

.

Using a similar argument to the one used in proposition 6 it can be seen that the solution is
unique and that Q is congruent to a WCSQ.

Remark 2. Let α1 : (0, π)× (0,
π
2
)→ (π

2
, π) and a : (0, π)× (0, π

2
)→ (0, π

2
) be such that

α1(θ, x) = arccos(− sin
2 θ

2
− cos2

θ

2
sin x)

and

a(θ, x) = arccos
cos θ + (− sin2 θ

2
− cos2 θ

2
sin x)(− sin2 θ

2
+ cos2 θ

2
sin x)

√
1− (− sin2 θ

2
− cos2 θ

2
sin x)2

√
1− (− sin2 θ

2
+ cos2 θ

2
sin x)2

.

The contour levels of α1 and a are represented in Figure 11 (done by Mathematica).
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Observe that if α1 ∈ (
π
2
, π) and a ∈ (0, π

2
) such that α1 ≥ arccos(1 −

2
1+cos a

) then the
intersection of any two contour levels of α1 and a is a unique point (θ, x) ∈ (0, π) × (0,

π
2
).

In other words any spherical quadrangle in the conditions of the previous proposition is
congruent to the intersection of two well centered spherical moons with the same angle
measure, θ, and being π

2
− x the angle measure between them.

Figure 11

Proposition 9. Let Q be a spherical quadrangle with congruent opposite sides, say a and b
and with congruent opposite angles, say α1 and α2 with α1 ≥ α2. Then,
i) a+ b < π;

ii) α1 ≥ arccos(− tan
a
2
tan b

2
);

iii) anyone of the parameters α1, α2, a or b is completely determined by the other three.

Proof. If Q is quadrangle as described above then it follows that 0 < 2a+ 2b < 2π and also
2α1 + 2α2 − 2π > 0, with α1 ∈ (0, π) and α2 ∈ (0, π). That is, 0 < a+ b < π, α1 + α2 > π,
α2 ∈ (0, π) and α1 ∈ (

π
2
, π), since α1 ≥ α2.

Assume, in first place, that α1 = α2 = α. Then, by lemma 1 we have cosα =
− tan a

2
tan b

2
and so α = α1 = α2 = arccos(− tan

a
2
tan b

2
).

As before a continuity argument allows us to conclude that if α1 > α2, then α1 >
arccos(− tan a

2
tan b

2
) > α2.

Now, we show how to determine α2 as a function of a, b and α1. The diagonal l of Q
through α2 gives rise to two angles, x and y, (α2 = x+ y) as illustrated in Figure 12.

Figure 12
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One has,

cos l = cos a cos b+ sin a sin b cosα1.

Besides,

cosx =
cos a− cos b cos l

sin b sin l
and cos y =

cos b− cos a cos l

sin a sin l
.

Since α2 = x+ y, then α2 is function of a, b and α1.

We can also determine b as a function of a, α1 and α2 as follows. Let b1, b2 and θ be,
respectively, the sides and the internal angle measure (to be determined) of the triangle
obtained by lengthening the b sides of Q, see Figure 13.

Figure 13

One has,

cos θ = − cosα1 cosα2 + sinα1 sinα2 cos a

and

cos b1 = −
cosα1 + cosα2 cos θ

sinα2 sin θ
∧ cos b2 = −

cosα2 + cosα1 cos θ

sinα1 sin θ

Finally, b = π − (b1 + b2) is function of a, α1 and α2.

Proposition 10. Let Q be a spherical quadrangle with congruent opposite sides, say a and b
such that a+ b < π and with congruent internal angles α1, α2, α1 > α2. Let us suppose also
that α1 > arccos(− tan

a
2
tan b

2
) and α2 = α2(a, b, α1). Then, Q is congruent to a WCSQ.

Proof. Let Q be a spherical quadrangle in the above conditions. We shall show that when we
have two well centered spherical moons with angle measure θ1 and θ2 and such that

π
2
− x,

x ∈ (0, π
2
) is the angle measure between them, see Figure 14, then the unique solution of the

system of equations





cosα1 = − sin
θ1
2
sin θ2

2
− cos θ1

2
cos θ2

2
sin x

cos a = cos θ1+cosα1 cosα2
sinα1 sinα2

cos b = cos θ2+cosα1 cosα2
sinα1 sinα2
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defines a well centered spherical quadrangle congruent to Q.
As seen in Corollary 1, if a such WCSQ exists it should be the intersection of two well

centered spherical moons (not orthogonal) with angles measure θ1 and θ2, 0 < θi < π, i = 1, 2
and with π

2
− x, 0 < x < π

2
as the angle measure between them, see Figure 14.

a2

a1

a

b

b

q2

q1

a2

a1

q1

q2

a2

a1

a

b

b
a2

a1

a

p
2 x

x

Figure 14

With the notation used in Figure 14 one has,

cosα1 = − cos
π − θ1
2
cos
π − θ2
2
+ sin

π − θ1
2
sin
π − θ2
2
cos(
π

2
+ x)

= − sin
θ1

2
sin
θ2

2
− cos

θ1

2
cos
θ2

2
sinx

On the other hand,

cos a =
cos θ1 + cos(π − α1) cos(π − α2)

sin(π − α1) sin(π − α2)
=
cos θ1 + cosα1 cosα2
sinα1 sinα2

and

cos b =
cos θ2 + cos(π − α1) cos(π − α2)

sin(π − α1) sin(π − α2)
=
cos θ2 + cosα1 cosα2
sinα1 sinα2

.

As before, it is a straightforward exercise to state the uniqueness of the solution.
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