Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Vol. 44, No. 2, pp. 581-603 (2003) |
|
Contraction de $SU(2)$ vers le groupe de Heisenberg et calcul de BerezinBenjamin CahenUniversité de Metz, Département de mathématiques, Ile du Saulcy 57045 Metz cedex 01, France e-mail: cahen@poncelet.sciences.univ-metz.frAbstract: We show that the unitary irreducible representations of $SU(2)$ can be contracted in the sense of Mickelsson and Niederle [MN] to the unitary irreducible representations of the Heisenberg group by use of Berezin calculus on the coadjoint orbits associated to these representations. An analogous result at Lie algebras level is obtained by considering hamiltonian functions on these coadjoint orbits. In particular we give an easy proof of a result of F. Ricci [R]. [MN] Mickelsson, J.; Niederle, J.: Contractions of Representations of de Sitter Groups. Commun. math. Phys. {\bf 27} (1972), 167--180. [R] Ricci, F.: A Contraction of $SU(2)$ to the Heisenberg Group. Mh. Math. {\bf 101} (1986), 211--225. Keywords: Groupes de Lie, représentations, orbites coadjointes, contraction, calcul de Berezin Classification (MSC2000): 22E46, 53D50, 81R30, 81S10 Full text of the article:
Electronic version published on: 1 Aug 2003. This page was last modified: 4 May 2006.
© 2003 Heldermann Verlag
|