Beitr\ EMIS ELibM Electronic Journals Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Vol. 44, No. 2, pp. 511-524 (2003)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home

 

Classification of five dimensional hypersurfaces with affine normal parallel cubic form

Salvador Gigena

1) Departamento de Matemáticas, Facultad de Ciencias Exactas, Ingenieria y Agrimensura, Universidad Nacional de Rosario, Avenida Pellegrini 250, 2000 Rosario, Argentina, e-mail: sgigena@fceia.unr.edu.ar 2) Departamento de Matemáticas, Facultad de Ciencias Exactas, Fisicas y Naturales, Universidad Nacional de Córdoba, Avenida Velez Sarsfield 1601, 5000 Córdoba, Argentina, e-mail: sgigena@efn.uncor.edu.ar

Abstract: We consider and classify those five dimensional hypersurfaces with affine normal parallel cubic form. The problem is firstly reduced to the classification of a certain class of solutions to the equation of Monge-Ampère type $\det\left(

tial_{ij}f\right) =\pm 1$. Then, it is used the so-called ``method of algorithmic sequence of coordinate changes'', in order to achieve the latter.

Keywords: Affine normal, parallel cubic form, Monge-Ampère equations

Classification (MSC2000): 53A15, 35J60

Full text of the article:


Electronic version published on: 1 Aug 2003. This page was last modified: 4 May 2006.

© 2003 Heldermann Verlag
© 2003--2006 ELibM and FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition