Beitr\ EMIS ELibM Electronic Journals Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Vol. 44, No. 1, pp. 99-109 (2003)

Previous Article

Next Article

Contents of this Issue

Other Issues

ELibM Journals

ELibM Home



On the Dimension of Finite Permutation Group Actions

Jonathan D. H. Smith

Department of Mathematics, Iowa State University, Ames, IA 50011, USA

Abstract: The dimension (or ``minimal base size'') of a finite permutation group action is defined to be the smallest power of the action that contains a regular orbit. Although the concept has appeared before in various contexts, the intention of the current paper is to survey it from a slightly different viewpoint, with particular emphasis on its behaviour with respect to $G$-set constructions. Elementary inequalities relate the dimension to the degree and closure properties of the action. The dimension is also expressed exactly in terms of the Möbius function of the subgroup lattice of the permutation group. For geometric permutation actions, the dimension is related to the geometric dimension of the space being acted on. The behaviour of the dimension is studied with respect to disjoint unions, Cartesian products, and wreath products of actions. Use of the wreath product construction exhibits permutation group actions with arbitrary positive integral dimension and degree-to-dimension ratio.

Full text of the article:

Electronic version published on: 3 Apr 2003. This page was last modified: 4 May 2006.

© 2003 Heldermann Verlag
© 2003--2006 ELibM and FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition