DIFFERENTIAL SUBORDINATION RESULTS USING A GENERALIZED SĂLĂGEAN OPERATOR AND RUSCHEWEYH OPERATOR
L. Andrei

Abstract. In the present paper we study the operator using the generalized Sălăgean operator and Ruscheweyh operator, denote by \(DR^n_\lambda \) the Hadamard product of the generalized Sălăgean operator \(D^n_\lambda \) and Ruscheweyh operator \(R^n \), given by

\[
DR^n_\lambda : A \rightarrow A, \quad DR^n_\lambda f(z) = (D^n_\lambda * R^n) f(z)
\]

and \(A_n = \{ f \in \mathcal{H}(U) : f(z) = z + a_{n+1}z^{n+1} + \ldots, z \in U \} \) is the class of normalized analytic functions with \(A_1 = A \). We obtain several differential subordinations regarding the operator \(DR^n_\lambda \).

2000 Mathematics Subject Classification: 30C45, 30A20, 34A40.

Keywords: differential subordination, convex function, best dominant, differential operator, generalized Sălăgean operator, Ruscheweyh operator, convolution product.

1. Introduction
Denote by \(U \) the unit disc of the complex plane, \(U = \{ z \in \mathbb{C} : |z| < 1 \} \) and \(\mathcal{H}(U) \) the space of holomorphic functions in \(U \).

Let \(A_n = \{ f \in \mathcal{H}(U) : f(z) = z + a_{n+1}z^{n+1} + \ldots, z \in U \} \) with \(A_1 = A \) and \(\mathcal{H}[a,n] = \{ f \in \mathcal{H}(U) : f(z) = a + a_nz^n + a_{n+1}z^{n+1} + \ldots, z \in U \} \) for \(a \in \mathbb{C} \) and \(n \in \mathbb{N} \).

Denote by \(K = \left\{ f \in A : \Re \frac{zf''(z)}{f'(z)} + 1 > 0, \ z \in U \right\} \), the class of normalized convex functions in \(U \).

If \(f \) and \(g \) are analytic functions in \(U \), we say that \(f \) is subordinate to \(g \), written \(f \prec g \), if there is a function \(w \) analytic in \(U \), with \(w(0) = 0 \), \(|w(z)| < 1 \), for all \(z \in U \), such that \(f(z) = g(w(z)) \) for all \(z \in U \). If \(g \) is univalent, then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(U) \subseteq g(U) \).

Let \(\psi : \mathbb{C}^3 \times U \rightarrow \mathbb{C} \) and \(h \) an univalent function in \(U \). If \(p \) is analytic in \(U \) and satisfies the (second-order) differential subordination

\[
\psi(p(z), zp'(z), z^2p''(z); z) \prec h(z), \quad z \in U,
\]
then \(p \) is called a solution of the differential subordination. The univalent function \(q \) is called a dominant of the solutions of the differential subordination, or more simply a dominant, if \(p \prec q \) for all \(p \) satisfying (1).

A dominant \(\tilde{q} \) that satisfies \(\tilde{q} \prec q \) for all dominants \(q \) of (1) is said to be the best dominant of (1). The best dominant is unique up to a rotation of \(U \).

Definition 1. (Al Oboudi [10]) For \(f \in \mathcal{A} \), \(\lambda \geq 0 \) and \(n \in \mathbb{N} \), the operator \(D^n_\lambda \) is defined by \(D^n_\lambda : \mathcal{A} \to \mathcal{A} \),

\[
\begin{align*}
D^0_\lambda f(z) &= f(z) \\
D^1_\lambda f(z) &= (1 - \lambda) f(z) + \lambda z f'(z) = D_\lambda f(z) \\
&\quad \vdots \\
D^{n+1}_\lambda f(z) &= (1 - \lambda) D^n_\lambda f(z) + \lambda z (D^n_\lambda f(z))' = D_\lambda (D^n_\lambda f(z)), \quad z \in U.
\end{align*}
\]

Remark 1. If \(f \in \mathcal{A} \) and \(f(z) = z + \sum_{j=2}^{\infty} a_j z^j \), then \(D^n_\lambda f(z) = z + \sum_{j=2}^{\infty} [1 + (j - 1) \lambda]^n a_j z^j, \quad z \in U \).

Remark 2. For \(\lambda = 1 \) in the above definition we obtain the Sălăgean differential operator [13].

Definition 2. (Ruscheweyh [12]) For \(f \in \mathcal{A} \), \(n \in \mathbb{N} \), the operator \(R^n \) is defined by \(R^n : \mathcal{A} \to \mathcal{A} \),

\[
\begin{align*}
R^0 f(z) &= f(z) \\
R^1 f(z) &= z f'(z) \\
&\quad \vdots \\
(n + 1) R^{n+1} f(z) &= z (R^n f(z))' + n R^n f(z), \quad z \in U.
\end{align*}
\]

Remark 3. If \(f \in \mathcal{A} \), \(f(z) = z + \sum_{j=2}^{\infty} a_j z^j \), then \(R^n f(z) = z + \sum_{j=2}^{\infty} \frac{(n+j-1)!}{n!(j-1)!} a_j z^j, \quad z \in U \).

Definition 3. (L. Andrei) Let \(\lambda \geq 0 \) and \(n \in \mathbb{N} \). Denote by \(DR^n_\lambda : \mathcal{A} \to \mathcal{A} \) the operator given by the Hadamard product (the convolution product) of the generalized Sălăgean operator \(D^n_\lambda \) and the Ruscheweyh operator \(R^n \):

\[
DR^n_\lambda f(z) = (D^n_\lambda * R^n) f(z),
\]

for any \(z \in U \) and each nonnegative integer \(n \).

Remark 4. If \(f \in \mathcal{A} \) and \(f(z) = z + \sum_{j=2}^{\infty} a_j z^j \), then \(DR^n_\lambda f(z) = z + \sum_{j=2}^{\infty} \left[\frac{(n+j-1)!}{n!(j-1)!} a_j^2 z^j \right], \quad z \in U \).
Remark 5. The operator DR_n^λ was studied in [2], [3], [8].

Remark 6. For $\lambda = 1$ we obtain the Hadamard product SR^n of the Sălăgean operator S_n and Ruscheweyh operator R^n, which was studied in [4], [5], [6], [7].

Lemma 1. (Hallenbeck and Ruscheweyh [11, Th. 3.1.6, p. 71]) Let h be a convex function with $h(0) = a$, and let $\gamma \in \mathbb{C} \setminus \{0\}$ be a complex number with $\Re \gamma \geq 0$. If $p \in H[a, n]$ and
\[
p(z) + \frac{1}{\gamma}zp'(z) \prec h(z), \quad z \in U,
\]
then
\[
p(z) \prec g(z) \prec h(z), \quad z \in U,
\]
where $g(z) = \frac{\gamma}{n\gamma/n} \int_0^z h(t)t^{\gamma/n-1} dt, z \in U.$

Lemma 2. (Miller and Mocanu [11]) Let g be a convex function in U and let
\[
h(z) = g(z) + \alpha z g'(z), \quad z \in U,
\]
where $\alpha > 0$ and n is a positive integer. If $p(z) = g(0) + p_n z^n + p_{n+1} z^{n+1} + \ldots, z \in U$, is holomorphic in U and
\[
p(z) + \alpha z p'(z) \prec h(z), \quad z \in U,
\]
then
\[
p(z) \prec g(z), \quad z \in U,
\]
and this result is sharp.

2. Main results

Theorem 3. Let g be a convex function, $g(0) = 1$ and let h be the function $h(z) = g(z) + \frac{i}{\gamma} g'(z)$, for $z \in U$.

If $\lambda, \delta \geq 0$, $n \in \mathbb{N}$, $f \in A$ and satisfies the differential subordination

\[
\left(\frac{DR_n^\lambda f(z)}{z} \right)^{\delta-1} (DR_n^\lambda f(z))' \prec h(z), \quad z \in U,
\]

then
\[
\left(\frac{DR_n^\lambda f(z)}{z} \right)^\delta \prec g(z), \quad z \in U,
\]
and this result is sharp.
Proof. For \(f \in A \) and \(f(z) = z + \sum_{j=2}^{\infty} a_j z^j \) we have

\[
DR^n f(z) = z + \sum_{j=2}^{\infty} \frac{(n+j-1)!}{n!(j-1)!} [1 + (j-1) \lambda]^n a_j^2 z^j, \text{ for } z \in U.
\]

Consider \(p(z) = \left(\frac{DR^n f(z)}{z} \right)^{\delta} = \left(z + \sum_{j=2}^{\infty} \frac{(n+j-1)!}{n!(j-1)!} [1 + (j-1) \lambda]^n a_j^2 z^j \right)^{\delta} = \left(1 + \sum_{j=2}^{\infty} \frac{(n+j-1)!}{n!(j-1)!} [1 + (j-1) \lambda]^n a_j^2 z^j \right)^{\delta} = 1 + p_\delta z^\delta + p_{\delta+1} z^{\delta+1} + \ldots, \text{ for } z \in U.

Differentiating we obtain \(\left(\frac{DR^n f(z)}{z} \right)^{\delta-1} (DR^n f(z))' = p(z) + \frac{1}{\delta} z p'(z), \text{ for } z \in U.
\]

Then \((2) \) becomes

\[
p(z) + \frac{1}{\delta} z p'(z) \prec h(z) = g(z) + \frac{z}{\delta} g'(z), \text{ for } z \in U.
\]

By using Lemma 2, we have

\[
p(z) \prec g(z), \text{ for } z \in U, \text{ i.e. } \left(\frac{DR^n f(z)}{z} \right)^{\delta} \prec g(z), \text{ for } z \in U.
\]

Theorem 4. Let \(h \) be an holomorphic function which satisfies the inequality

\[
\Re \left(1 + \frac{zh''(z)}{h'(z)} \right) > -\frac{1}{2}, \text{ for } z \in U, \text{ and } h(0) = 1.
\]

If \(\lambda, \delta \geq 0, n \in \mathbb{N}, f \in A \) and satisfies the differential subordination

\[
\left(\frac{DR^n f(z)}{z} \right)^{\delta-1} (DR^n f(z))' \prec h(z), \text{ for } z \in U,
\]

then

\[
\left(\frac{DR^n f(z)}{z} \right)^{\delta} \prec q(z), \text{ for } z \in U,
\]

where \(q(z) = \frac{\delta}{z} \int_0^z h(t) t^{\delta-1} dt \). The function \(q \) is convex and it is the best dominant.

Proof. Let

\[
p(z) = \left(\frac{DR^n f(z)}{z} \right)^{\delta} = \left(z + \sum_{j=2}^{\infty} \frac{(n+j-1)!}{n!(j-1)!} [1 + (j-1) \lambda]^n a_j^2 z^j \right)^{\delta} = \left(1 + \sum_{j=2}^{\infty} \frac{(n+j-1)!}{n!(j-1)!} [1 + (j-1) \lambda]^n a_j^2 z^j \right)^{\delta} = 1 + \sum_{j=\delta+1}^{\infty} p_j z^{j-1}, \text{ for } z \in U, p \in \mathcal{H}[1, \delta].
\]
Differentiating, we obtain \((\frac{DR^n_\lambda f(z)}{z})^{\delta-1} (DR^n_\lambda f(z))' = p(z) + \frac{1}{\delta} z p'(z), \ z \in U, \)
and (3) becomes
\[
p(z) + \frac{1}{\delta} z p'(z) \prec h(z), \quad z \in U.
\]

Using Lemma 1, we have
\[
p(z) \prec q(z), \quad z \in U, \text{ i.e. } \left(\frac{DR^n_\lambda f(z)}{z}\right)^\delta \prec q(z) = \frac{\delta}{z^\delta} \int_0^z h(t) t^{\delta-1} dt, \quad z \in U,
\]
and \(q \) is the best dominant.

Corollary 5. Let \(h(z) = \frac{1+(2\beta-1)z}{1+z} \) be a convex function in \(U \), where \(0 \leq \beta < 1 \).

If \(\delta, \lambda \geq 0, \ n \in \mathbb{N}, \ f \in A \) and satisfies the differential subordination
\[
\left(\frac{DR^n_\lambda f(z)}{z}\right)^{\delta-1} (DR^n_\lambda f(z))' \prec h(z), \quad z \in U, \tag{4}
\]
then
\[
\left(\frac{DR^n_\lambda f(z)}{z}\right)^\delta \prec q(z), \quad z \in U,
\]
where \(q \) is given by \(q(z) = (2\beta - 1) + \frac{2(1-\beta)\delta}{z^\delta} \int_0^z \frac{t^{\delta-1}}{1+t} dt, \quad z \in U. \) The function \(q \) is convex and it is the best dominant.

Proof. Following the same steps as in the proof of Theorem 4 and considering \(p(z) = \left(\frac{DR^n_\lambda f(z)}{z}\right)^\delta \), the differential subordination (4) becomes
\[
p(z) + \frac{z}{\delta} p'(z) \prec h(z) = \frac{1+(2\beta-1)z}{1+z}, \quad z \in U.
\]

By using Lemma 1 for \(\gamma = \delta \), we have \(p(z) \prec q(z) \), i.e.
\[
\left(\frac{DR^n_\lambda f(z)}{z}\right)^\delta \prec q(z) = \frac{\delta}{z^\delta} \int_0^z h(t) t^{\delta-1} dt = \frac{\delta}{z^\delta} \int_0^z \frac{t^{\delta-1}}{1+t} dt = \frac{\delta}{z^\delta} \int_0^z \left[(2\beta - 1) t^{\delta-1} + 2(1-\beta) \frac{t^{\delta-1}}{1+t} \right] dt
\]
\[
= (2\beta - 1) + \frac{2(1-\beta)\delta}{z^\delta} \int_0^z \frac{t^{\delta-1}}{1+t} dt, \quad z \in U.
\]
Remark 7. For \(n = 1, \lambda = \frac{1}{2}, \delta = 1 \) we obtain the same example as in [9, Example 7.2.1, p. 273].

Theorem 6. Let \(g \) be a convex function such that \(g(0) = 1 \) and let \(h \) be the function \(h(z) = g(z) + \frac{\lambda}{\delta} g'(z), z \in U \).

If \(\lambda, \delta \geq 0, n \in \mathbb{N}, f \in A \) and the differential subordination
\[
\frac{\delta + 1}{\delta} \frac{D^\alpha f(z)}{(D^\alpha f(z))} + \frac{2}{\delta} \frac{D^\alpha f(z)}{(D^\alpha f(z))} \left[\frac{(D^\alpha f(z))'}{D^\alpha f(z)} - 2 \frac{(D^{\alpha+1} f(z))'}{D^\alpha f(z)} \right] < h(z),
\]
\(z \in U \), holds, then
\[
z \frac{D^\alpha f(z)}{(D^\alpha f(z))} < g(z), \quad z \in U,
\]
and this result is sharp.

Proof. For \(f \in A, f(z) = z + \sum_{j=2}^{\infty} a_j z^j \) we have
\[
D^\alpha f(z) = z + \sum_{j=2}^{\infty} \frac{\lambda}{\delta} (n+j-1)! [1 + (j-1) \lambda] a_j^j z^j, z \in U.
\]
Consider \(p(z) = z \frac{D^\alpha f(z)}{(D^\alpha f(z))} \) and we obtain
\[
p(z) + \frac{\lambda}{\delta} p'(z) = \frac{\delta + 1}{\delta} \frac{D^\alpha f(z)}{(D^\alpha f(z))} + \frac{2}{\delta} \frac{D^\alpha f(z)}{(D^\alpha f(z))} \left[\frac{(D^\alpha f(z))'}{D^\alpha f(z)} - 2 \frac{(D^{\alpha+1} f(z))'}{D^\alpha f(z)} \right].
\]
Relation (5) becomes
\[
p(z) + \frac{\lambda}{\delta} p'(z) \prec h(z) = g(z) + \frac{\lambda}{\delta} g'(z), \quad z \in U.
\]
By using Lemma 2, we have
\[
p(z) \prec g(z), \quad z \in U, \text{ i.e. } z \frac{D^\alpha f(z)}{(D^\alpha f(z))} \prec g(z), \quad z \in U.
\]

Theorem 7. Let \(h \) be an holomorphic function which satisfies the inequality
\[
Re \left(1 + \frac{h''(z)}{h'(z)} \right) > -\frac{1}{2}, z \in U, \text{ and } h(0) = 1.
\]
If \(\lambda, \delta \geq 0, n \in \mathbb{N}, f \in A \) and satisfies the differential subordination
\[
\frac{\delta + 1}{\delta} \frac{D^\alpha f(z)}{(D^\alpha f(z))} + \frac{2}{\delta} \frac{D^\alpha f(z)}{(D^\alpha f(z))} \left[\frac{(D^\alpha f(z))'}{D^\alpha f(z)} - 2 \frac{(D^{\alpha+1} f(z))'}{D^\alpha f(z)} \right] < h(z),
\]
\(z \in U \), then
\[
z \frac{D^\alpha f(z)}{(D^\alpha f(z))} \prec q(z), \quad z \in U,
\]
where \(q(z) = \frac{\lambda}{\delta} \int_0^z h(t) t^{\delta-1} dt \). The function \(q \) is convex and it is the best dominant.
Proof. Let \(p(z) = z \frac{DR^nf(z)}{(DR^{n+1}f(z))^2} \), \(z \in U, p \in \mathcal{H}[1,1] \).

Differentiating, we obtain

\[
p(z) + \frac{z}{\delta} p'(z) = z^{\delta+1} \frac{DR^n f(z)}{(DR^{n+1}f(z))^2} + \frac{z^2}{\delta} \frac{DR^n f(z)}{(DR^{n+1}f(z))^2} \left[\frac{(DR^n f(z))'}{DR^n f(z)} - 2 \frac{(DR^{n+1}f(z))'}{DR^{n+1}f(z)} \right],
\]

\(z \in U \), and (6) becomes

\[
p(z) + \frac{z}{\delta} p'(z) \prec h(z), \quad z \in U.
\]

Using Lemma 1, we have

\[
p(z) < q(z), \quad z \in U, \quad \text{i.e.} \quad z \frac{DR^n f(z)}{(DR^{n+1}f(z))^2} < q(z) = \frac{\delta}{z^\delta} \int_0^z h(t) t^{\delta-1} dt, \quad z \in U,
\]

and \(q \) is the best dominant.

Theorem 8. Let \(g \) be a convex function such that \(g(0) = 1 \) and let \(h \) be the function \(h(z) = g(z) + \frac{z}{\delta} g'(z), \quad z \in U \).

If \(\lambda, \delta \geq 0, n \in \mathbb{N}, f \in \mathcal{A} \) and the differential subordination

\[
z^{\delta+2} \frac{(DR^n f(z))'}{DR^n f(z)} + \frac{z^3}{\delta} \left[\frac{(DR^n f(z))''}{DR^n f(z)} - \left(\frac{(DR^n f(z))'}{DR^n f(z)} \right)^2 \right] \prec h(z), \quad z \in U (7)
\]

holds, then

\[
z^{\delta} \frac{(DR^n f(z))'}{DR^n f(z)} \prec g(z), \quad z \in U.
\]

This result is sharp.

Proof. Let \(p(z) = z^2 \frac{(DR^n f(z))'}{DR^n f(z)} \). We deduce that \(p \in \mathcal{H}[0,1] \).

Differentiating, we obtain

\[
p(z) + \frac{z}{\delta} p'(z) = z^2 \frac{2 \delta + 2}{\delta} \frac{(DR^n f(z))'}{DR^n f(z)} + \frac{z^3}{\delta} \left[\frac{(DR^n f(z))''}{DR^n f(z)} - \left(\frac{(DR^n f(z))'}{DR^n f(z)} \right)^2 \right], \quad z \in U.
\]

Using the notation in (7), the differential subordination becomes

\[
p(z) + \frac{1}{\delta} z^2 p'(z) \prec h(z) = g(z) + \frac{z}{\delta} g'(z).
\]

By using Lemma 2, we have

\[
p(z) \prec g(z), \quad z \in U, \quad \text{i.e.} \quad z^2 \frac{(DR^n f(z))'}{DR^n f(z)} \prec g(z), \quad z \in U,
\]

and this result is sharp.
Theorem 9. Let h be an holomorphic function which satisfies the inequality
\[\Re \left(1 + \frac{zh''(z)}{h(z)} \right) > -\frac{1}{2}, \quad z \in U, \quad \text{and} \quad h(0) = 1. \]
If $\lambda, \delta \geq 0$, $n \in \mathbb{N}$, $f \in \mathcal{A}$ and satisfies the differential subordination
\[z^2 \frac{\delta + 2}{\delta} \left(DR^n_\lambda f(z) \right)' + z^3 \left[\left(DR^n_\lambda f(z) \right)'' - \left(DR^n_\lambda f(z) \right)' \right]^2 < h(z), \quad z \in U, \]
then
\[z^2 \frac{\left(DR^n_\lambda f(z) \right)'}{DR^n_\lambda f(z)} < q(z), \quad z \in U, \]
where $q(z) = \frac{\delta}{z^2} \int_0^z h(t) t^{\delta - 1} dt$. The function q is convex and it is the best dominant.

Proof. Let $p(z) = z^2 \frac{\left(DR^n_\lambda f(z) \right)'}{DR^n_\lambda f(z)}$, $z \in U$, $p \in \mathcal{H}[0, 1]$.
Differentiating, we obtain
\[p(z) + \frac{\delta p'(z)}{\delta} = z^2 \frac{\delta + 2}{\delta} \left(DR^n_\lambda f(z) \right)' + z^3 \left[\left(DR^n_\lambda f(z) \right)'' - \left(DR^n_\lambda f(z) \right)' \right]^2, \quad z \in U, \text{ and } (8) \]
becomes
\[p(z) + \frac{1}{\delta} zp'(z) < h(z), \quad z \in U. \]
Using Lemma 1, we have
\[p(z) < q(z), \quad z \in U, \quad \text{i.e.} \quad z^2 \frac{\left(DR^n_\lambda f(z) \right)'}{DR^n_\lambda f(z)} < q(z) = \frac{\delta}{z^2} \int_0^z h(t) t^{\delta - 1} dt, \quad z \in U, \]
and q is the best dominant.

Theorem 10. Let g be a convex function such that $g(0) = 1$ and let h be the function
\[h(z) = g(z) + zg'(z), \quad z \in U. \]
If $\lambda \geq 0$, $n \in \mathbb{N}$, $f \in \mathcal{A}$ and the differential subordination
\[1 - \frac{DR^n_\lambda f(z) \cdot \left(DR^n_\lambda f(z) \right)'}{\left[\left(DR^n_\lambda f(z) \right)' \right]^2} < h(z), \quad z \in U \]
holds, then
\[\frac{DR^n_\lambda f(z)}{z \left(DR^n_\lambda f(z) \right)' < g(z), \quad z \in U. \]
This result is sharp.
Proof. Let \(p(z) = \frac{DR_n^\lambda f(z)}{z(DR_n^\lambda f(z))} \). We deduce that \(p \in H[1, 1] \).

Differentiating, we obtain \(1 - \frac{DR_n^\lambda f(z)\cdot(DR_n^\lambda f(z))^\prime}{[DR_n^\lambda f(z)]^2} = p(z) +zp^\prime(z), \ z \in U \).

Using the notation in (9), the differential subordination becomes
\[
p(z) + zp^\prime(z) \prec h(z) = g(z) + zg^\prime(z).
\]

By using Lemma 2, we have
\[
p(z) \prec g(z), \ z \in U, \ i.e. \ \frac{DR_n^\lambda f(z)}{z(DR_n^\lambda f(z))} \prec g(z), \ z \in U,
\]
and this result is sharp.

Theorem 11. Let \(h \) be an holomorphic function which satisfies the inequality
\[
\text{Re} \left(1 + \frac{zh''(z)}{h'(z)} \right) > -\frac{1}{2}, \ z \in U, \text{ and } h(0) = 1.
\]

If \(\lambda \geq 0, \ n \in \mathbb{N}, \ f \in \mathcal{A} \) and satisfies the differential subordination
\[
1 - \frac{DR_n^\lambda f(z)\cdot(DR_n^\lambda f(z))^\prime}{[DR_n^\lambda f(z)]^2} \prec h(z), \ z \in U,
\]
then
\[
\frac{DR_n^\lambda f(z)}{z(DR_n^\lambda f(z))} \prec q(z), \ z \in U,
\]
where \(q(z) = \frac{1}{z} \int_0^z h(t)dt \). The function \(q \) is convex and it is the best dominant.

Proof. Let \(p(z) = \frac{DR_n^\lambda f(z)}{z(DR_n^\lambda f(z))} \), \ z \in U, \ p \in H[0, 1].

Differentiating, we obtain \(1 - \frac{DR_n^\lambda f(z)\cdot(DR_n^\lambda f(z))^\prime}{[DR_n^\lambda f(z)]^2} = p(z) +zp^\prime(z), \ z \in U, \) and
\[
(10)
\]
becomes
\[
p(z) + zp^\prime(z) \prec h(z), \ z \in U.
\]

Using Lemma 1, we have
\[
p(z) \prec q(z), \ z \in U, \ i.e. \ \frac{DR_n^\lambda f(z)}{z(DR_n^\lambda f(z))} \prec q(z) = \frac{1}{z} \int_0^z h(t)dt, \ z \in U,
\]
and \(q \) is the best dominant.
Corollary 12. Let
\[h(z) = \frac{1 + 2\beta - 1}{1 + z} \]
be a convex function in \(U \), where \(0 \leq \beta < 1 \). If \(\lambda \geq 0, \ n \in \mathbb{N}, \ f \in \mathcal{A} \) and satisfies the differential subordination
\[
1 - \frac{R D^n_{\lambda, \alpha} f(z) \cdot \left(R D^n_{\lambda, \alpha} f(z) \right)''}{\left(R D^n_{\lambda, \alpha} f(z) \right)'} \prec h(z), \ z \in U, \tag{11}
\]
then
\[
\frac{R D^n_{\lambda, \alpha} f(z)}{z \left(R D^n_{\lambda, \alpha} f(z) \right)'} \prec q(z), \ z \in U,
\]
where \(q \) is given by
\[
q(z) = (2\beta - 1) + 2 \left(1 - \beta \right) \frac{\ln(1+z)}{z}, \ z \in U.
\]
The function \(q \) is convex and it is the best dominant.

Proof. Following the same steps as in the proof of Theorem 11 and considering \(p(z) = \frac{R D^n_{\lambda, \alpha} f(z)}{z \left(R D^n_{\lambda, \alpha} f(z) \right)'} \), the differential subordination (11) becomes
\[
p(z) + z p'(z) \prec h(z) = \frac{1 + (2\beta - 1)z}{1 + z}, \ z \in U.
\]
By using Lemma 1 for \(\gamma = 1 \), we have \(p(z) \prec q(z) \), i.e.
\[
\frac{R D^n_{\lambda, \alpha} f(z)}{z \left(R D^n_{\lambda, \alpha} f(z) \right)'} \prec q(z) = \frac{1}{z} \int_0^z h(t) dt = \frac{1}{z} \int_0^z \frac{1 + (2\beta - 1)t}{1 + t} dt = \frac{1}{z} \int_0^z \left[(2\beta - 1) + \frac{2(1 - \beta)}{1 + t} \right] dt = (2\beta - 1) + 2 \left(1 - \beta \right) \frac{\ln(1+z)}{z}, \ z \in U.
\]

Example 1. Let \(h(z) = \frac{1 - z}{1 + z} \) a convex function in \(U \) with \(h(0) = 1 \) and \(Re \left(\frac{2h''(z)}{R'(z)} + 1 \right) > -\frac{1}{2} \).

Let \(f(z) = z + z^2 \), \(z \in U \). For \(n = 1, \ \lambda = \frac{1}{2} \), we obtain \(R^1 f(z) = z f'(z) = z + 2z^2, \ D_{\frac{1}{2}} f(z) = \frac{1}{2} f(z) + \frac{1}{2} z f'(z) = z + \frac{3}{2} z^2, \ D_{\frac{1}{2}}^1 f(z) = z + 3 z^2, \ z \in U. \)

Then \(\left(D_{\frac{1}{2}}^1 f(z) \right)' = 1 + 6z, \ \left(D_{\frac{1}{2}}^1 f(z) \right)'' = 6, \)
\[
\frac{D_{\frac{1}{2}}^1 f(z)}{z \left(D_{\frac{1}{2}}^1 f(z) \right)'} = \frac{z + 3z^2}{z(1 + 6z)} = \frac{1 + 3z}{1 + 6z},
\]
54
We have
\[q(z) = \frac{1}{2} \int_0^z \frac{1-t}{1+t} \, dt = -1 + \frac{2 \ln(1+z)}{z}. \]

Using Theorem 11 we obtain
\[\frac{18z^2 + 6z + 1}{(1+6z)^2} \prec 1 - \frac{z}{1+z}, \quad z \in U, \]
induce
\[\frac{1+3z}{1+6z} \prec -1 + \frac{2 \ln(1+z)}{z}, \quad z \in U. \]

Theorem 13. Let \(g \) be a convex function such that \(g(0) = 0 \) and let \(h \) be the function
\[h(z) = g(z) + zg'(z), \quad z \in U. \]

If \(\lambda \geq 0, \, n \in \mathbb{N}, \, f \in \mathcal{A} \) and the differential subordination
\[\left[(DR^n_\lambda f(z))'\right]^2 + DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'' \prec h(z), \quad z \in U \]
(12)
holds, then
\[\frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z} \prec g(z), \quad z \in U. \]
This result is sharp.

Proof. Let \(p(z) = \frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z} \). We deduce that \(p \in \mathcal{H}[0,1] \).

Differentiating, we obtain
\[\left[(DR^n_\lambda f(z))'\right]^2 + DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'' = p(z) +
zp'(z), \quad z \in U. \]

Using the notation in (12), the differential subordination becomes
\[p(z) +zp'(z) \prec h(z) = g(z) + zg'(z). \]

By using Lemma 2, we have
\[p(z) \prec g(z), \quad z \in U, \quad \text{i.e.} \quad \frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z} \prec g(z), \quad z \in U, \]
and this result is sharp.

Theorem 14. Let \(h \) be an holomorphic function which satisfies the inequality
\[\text{Re} \left(1 + \frac{zh''(z)}{h'(z)}\right) > -\frac{1}{2}, \quad z \in U, \quad \text{and} \quad h(0) = 0. \]

If \(\lambda \geq 0, \, n \in \mathbb{N}, \, f \in \mathcal{A} \) and satisfies the differential subordination
\[\left[(DR^n_\lambda f(z))'\right]^2 + DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'' \prec h(z), \quad z \in U, \]
(13)
then
\[\frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z} \prec q(z), \quad z \in U, \]
where \(q(z) = \frac{1}{z} \int_0^z h(t)dt \). The function \(q \) is convex and it is the best dominant.

Proof. Let \(p(z) = \frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z}, \quad z \in U, \quad p \in \mathcal{H}[0, 1] \).

Differentiating, we obtain
\[\left((DR^n_\lambda f(z))' \right)^2 + DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'' = p(z) + zp'(z), \quad z \in U, \]
and (13) becomes
\[p(z) + zp'(z) \prec h(z), \quad z \in U. \]

Using Lemma 1, we have
\[p(z) \prec q(z), \quad z \in U, \quad \text{i.e.} \quad \frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z} \prec q(z) = \frac{1}{z} \int_0^z h(t)dt, \quad z \in U, \]
and \(q \) is the best dominant.

Corollary 15. Let \(h(z) = \frac{1+2(2\beta-1)z}{1+z} \) be a convex function in \(U \), where \(0 \leq \beta < 1 \).

If \(\lambda \geq 0, \quad n \in \mathbb{N}, \quad f \in \mathcal{A} \) and satisfies the differential subordination
\[\left((DR^n_\lambda f(z))' \right)^2 + DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'' \prec h(z), \quad z \in U, \quad (14) \]
then
\[\frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z} \prec q(z), \quad z \in U, \]
where \(q \) is given by
\[q(z) = (2\beta-1) + 2(1-\beta) \ln \left(\frac{1+z}{z} \right), \quad z \in U. \]
The function \(q \) is convex and it is the best dominant.

Proof. Following the same steps as in the proof of Theorem 14 and considering
\[p(z) = \frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z}, \quad \text{the differential subordination} \quad (14) \]
becomes
\[p(z) + zp'(z) \prec h(z) = \frac{1+2(2\beta-1)z}{1+z}, \quad z \in U. \]

By using Lemma 1 for \(\gamma = 1 \), we have \(p(z) \prec q(z) \), i.e.
\[\frac{DR^n_\lambda f(z) \cdot (DR^n_\lambda f(z))'}{z} \prec q(z) = \frac{1}{z} \int_0^z h(t)dt = \]
\[= \frac{1}{z} \int_0^z \frac{1+(2\beta-1)t}{1+t} dt = \frac{1}{z} \int_0^z \left[(2\beta-1) + 2 \frac{(1-\beta)}{1+t} \right] dt \]
\[= (2\beta-1) + 2(1-\beta) \frac{\ln (1+z)}{z}, \quad z \in U. \]
Example 2. Let \(h(z) = \frac{1-z}{1+z} \) a convex function in \(U \) with \(h(0) = 1 \) and
\[
\text{Re} \left(\frac{z h''(z)}{h'(z)} + 1 \right) > -\frac{1}{2}.
\]
Let \(f(z) = z + z^2, z \in U \). For \(n = 1, \lambda = \frac{1}{2} \), we obtain
\[
DR^1_\lambda f(z) = z + 3z^2, \quad z \in U.
\]
Then
\[
\left(DR^1_\lambda f(z) \right)' = 1 + 6z,
\]
\[
\frac{DR^n_\lambda f(z)(DR^n_\lambda f(z))'}{z} = \frac{(z+3z^2)(1+6z)}{z} = 18z^2 + 9z + 1,
\]
\[
\left[\left(DR^1_\lambda f(z) \right)' \right]^2 + DR^1_\lambda f(z) \cdot \left(DR^1_\lambda f(z) \right)' = (1 + 6z)^2 + (z + 3z^2) \cdot 6 = 54z^2 + 18z + 1.
\]
We have \(q(z) = \frac{1}{z} \int_0^z \frac{1-3}{1+z} dt = -1 + \frac{2 \ln(1+z)}{z} \).
Using Theorem 14 we obtain
\[
54z^2 + 18z + 1 < \frac{1 - z}{1+z}, \quad z \in U,
\]
induce
\[
18z^2 + 9z + 1 < -1 + \frac{2 \ln(1+z)}{z}, \quad z \in U.
\]

Theorem 16. Let \(g \) be a convex function such that \(g(0) = 0 \) and let \(h \) be the function
\[h(z) = g(z) + \frac{1}{1+z} g'(z), z \in U. \]
If \(\lambda \geq 0, \delta \in (0, 1), n \in \mathbb{N}, f \in \mathcal{A} \) and the differential subordination
\[
\left(\frac{z}{DR^n_\lambda f(z)} \right)^\delta \frac{DR^{n+1}_\lambda f(z)}{1 - \delta \left(\frac{DR^{n+1}_\lambda f(z)}{DR^n_\lambda f(z)} \right)^\delta} \prec h(z), \quad z \in U
\]
holds, then
\[
\frac{DR^{n+1}_\lambda f(z)}{z} \cdot \left(\frac{z}{DR^n_\lambda f(z)} \right)^\delta \prec g(z), \quad z \in U.
\]
This result is sharp.

Proof. Let \(p(z) = \frac{DR^{n+1}_\lambda f(z)}{z} \cdot \left(\frac{z}{DR^n_\lambda f(z)} \right)^\delta \). We deduce that \(p \in \mathcal{H}[1, 1] \).
Differentiating, we obtain
\[
\left(\frac{z}{DR^n_\lambda f(z)} \right)^\delta \frac{DR^{n+1}_\lambda f(z)}{1 - \delta \left(\frac{DR^{n+1}_\lambda f(z)}{DR^n_\lambda f(z)} \right)^\delta} = p(z) + \frac{1}{1-z} z p'(z), \quad z \in U.
\]
Using the notation in (15), the differential subordination becomes
\[
p(z) + \frac{1}{1-z} z p'(z) \prec h(z) = g(z) + \frac{z}{1-\delta} g'(z).
\]
By using Lemma 2, we have
\[p(z) \prec g(z), \quad z \in U, \quad \text{i.e.} \quad \frac{DR_{\lambda}^{n+1} f(z)}{z} \cdot \left(\frac{z}{DR_{\lambda}^{n} f(z)} \right)^{\delta} \prec g(z), \quad z \in U, \]
and this result is sharp.

Theorem 17. Let \(h \) be an holomorphic function which satisfies the inequality
\[\Re \left(1 + \frac{zh''(z)}{h'(z)} \right) > -\frac{1}{2}, \quad z \in U, \quad \text{and} \quad h(0) = 1. \]
If \(\lambda \geq 0, \quad \delta \in (0, 1), \quad n \in \mathbb{N}, \quad f \in A \) and satisfies the differential subordination
\[\left(\frac{z}{DR_{\lambda}^{n} f(z)} \right)^{\delta} \frac{DR_{\lambda}^{n+1} f(z)}{1 - \delta} \left(\frac{DR_{\lambda}^{n+1} f(z)}{DR_{\lambda}^{n+1} f(z)} - \delta \frac{(DR_{\lambda}^{n+1} f(z))'}{DR_{\lambda}^{n+1} f(z)} \right) \prec h(z), \quad z \in U, \]
then
\[\frac{DR_{\lambda}^{n+1} f(z)}{z} \cdot \left(\frac{z}{DR_{\lambda}^{n} f(z)} \right)^{\delta} \prec q(z), \quad z \in U, \]
where \(q(z) = \frac{1 - \delta}{2 + \delta} \int_{0}^{z} h(t) t^{-\delta} dt \). The function \(q \) is convex and it is the best dominant.

Proof. Let \(p(z) = \frac{DR_{\lambda}^{n+1} f(z)}{z} \cdot \left(\frac{z}{DR_{\lambda}^{n} f(z)} \right)^{\delta}, \quad z \in U, \quad p \in \mathcal{H}[0, 1]. \)
Differentiating, we obtain
\[\frac{z}{DR_{\lambda}^{n} f(z)} \delta \frac{DR_{\lambda}^{n+1} f(z)}{1 - \delta} \left(\frac{DR_{\lambda}^{n+1} f(z)}{DR_{\lambda}^{n+1} f(z)} - \delta \frac{(DR_{\lambda}^{n+1} f(z))'}{DR_{\lambda}^{n+1} f(z)} \right) = p(z) + \frac{1}{1 - \delta} \frac{z p'(z)}{z}, \quad z \in U, \quad \text{and} \quad (16) \text{ becomes} \]
\[p(z) + \frac{1}{1 - \delta} \frac{z p'(z)}{z} \prec h(z), \quad z \in U. \]
Using Lemma 1, we have
\[p(z) \prec q(z), \quad z \in U, \quad \text{i.e.} \quad \frac{DR_{\lambda}^{n+1} f(z)}{z} \cdot \left(\frac{z}{DR_{\lambda}^{n} f(z)} \right)^{\delta} \prec q(z) = \frac{1 - \delta}{2 + \delta} \int_{0}^{z} h(t) t^{-\delta} dt, \]
\(z \in U, \) and \(q \) is the best dominant.

Remark 8. For \(\lambda = 1 \) we obtain the same results for the operator \(SR_{\lambda}^{n} \).

References

Loriana Andrei
Department of Mathematics and Computer Science,
University of Oradea,
1 Universitatii street, 410087 Oradea, Romania
email: lori_andrei@yahoo.com