GAPS OF A CLASS OF PSEUDO SYMMETRIC NUMERICAL SEMIGROUPS

SEDAT ILHAN AND MERAL SÜER

ABSTRACT. In this study, we give some results about the gaps, fundamental and special gaps of a pseudo symmetric numerical semigroup in the form of $S = \langle 3, 3 + s, 3 + 2s \rangle$ for $s \in \mathbb{Z}^+$ and $3 \nmid s$.

2000 Mathematics Subject Classification: 20M14

1. Introduction

Let \mathbb{Z} and \mathbb{N} denote the set of integers and nonnegative integers, respectively. A numerical semigroup is a subset S of \mathbb{N} that is closed under addition where $0 \in S$ and $\mathbb{N} \setminus S$ is finite. It is well known that every numerical semigroup is finitely generated [1], that is to say, there exist $s_1, s_2, ..., s_p \in \mathbb{N}$ such that $s_1 < s_2 < ... < s_p$ and $S = \langle s_1, s_2, ..., s_p \rangle = \{s_1k_1 + s_2k_2 + ... + s_pk_p : k_i \in \mathbb{N}, 1 \leq i \leq p\}$. Moreover, every numerical semigroup has a unique minimal system of generators.

Following the notation used in [2,3], if S is a numerical semigroup then the greatest integer in $\mathbb{Z} \setminus S$ is the Frobenius number of S, denoted by $g(S)$. The elements of $\mathbb{N} \setminus S$, denoted by $H(S)$ are called gaps of S. If $x \in H(S)$ and $\{2x, 3x\} \subset S$ then x is called the fundamental gap. We denote by $FH(S)$ the set of fundamental gaps of S.

S is symmetric if for every $x \in \mathbb{Z} \setminus S$, the integer $g(S) - x \notin S$. Similarly, S is pseudo symmetric if $g(S)$ is even and there exists an integer $x \in \mathbb{Z} \setminus S$ such that $x = \frac{g(S)}{2}$ and $g(S) - x \notin S$. For more background on symmetric and pseudo symmetric numerical semigroups, the reader is encouraged to see [2,3,4,7,9].

Let S be a numerical semigroup and $m \in S \setminus \{0\}$. The Apéry set of S with respect to m is defined by $Ap(S, m) = \{s \in S : s - m \notin S\}$. Hence, $Ap(S, m) = \{w(0) = 0, w(1), w(2), ..., w(m - 1)\}$ and $g(S) = \max(Ap(S, m)) - m$, where $w(i)$ is the least element in S that is congruent with i modulo m. For instance see [6] and [10].

99
The following can be found in [7]: Let \(S \) be a numerical semigroup. We say that \(x \in \mathbb{Z} \setminus S \) is a pseudo Frobenius number of \(S \) if \(x + s \in S \) for all \(s \in S \setminus \{0\} \). We denote by \(Pg(S) \) the set of pseudo Frobenius numbers of \(S \). The cardinal of \(Pg(S) \) is called the type of \(S \) and denoted by \(\text{type}(S) \). Notice that \(g(S) \) is always an element of \(Pg(S) \). In [11], it is proved that a numerical semigroup is symmetric if and only if \(Pg(S) = \{g(S)\} \) i.e. \(\text{type}(S) = 1 \). Furthermore, we define in \(S \) the following partial order:

\[
a \leq_S b \text{ if } b - a \in S.
\]

For \(m \in S \setminus \{0\} \), it is proved that \(Pg(S) = \{w(i) - m : w(i) \text{maximals } \leq_S Ap(S,m)\} \) in [7].

An element \(x \in Pg(S) \) is a special gap of \(S \) if \(2x \in S \). We denote by \(SH(S) \) the set of special gaps of \(S \). That is, \(SH(S) = \{x \in Pg(S) : 2x \in S\} \). The following proposition is proved in [8]:

\[
x \in Pg(S) \text{ if and only if } S \cup \{x\} \text{ is a numerical semigroup.}
\]

The main goal of this paper is to prove Theorem 2 and Theorem 3 which gives the sets \(H(S) \) and \(FH(S) \) with respect to \(s \). We also find the cardinality \(\sharp(FH(S)) \) and give the relations between \(\sharp(H(S)) \) and \(\sharp(FH(S)) \) in Corollary 4 and Corollary 5.

In this paper, \(S \) is defined as \(S = < 3, 3 + s, 3 + 2s > \) for \(s \in \mathbb{Z}^+ \) and \(3 \nmid s \).

2. Results

In this section, we will give some results related to the gaps, fundamental and special gaps of a pseudo symmetric numerical semigroup in the form \(S = < 3, 3 + s, 3 + 2s > \) for \(s \in \mathbb{Z}^+ \) and \(3 \nmid s \).

Firstly we give following theorem:

Theorem 1. \(S = < 3, 3+s, 3+2s > \) is a pseudo symmetric numerical semigroup, for \(s \in \mathbb{Z}^+ \) and \(3 \nmid s \). [see 5,9].

Notation: We can write the following cases for \(S \):

(i) If \(s = 6k + 1 \) or \(s = 6k + 4 \) then

\[
S = < 3, 3 + s, 3 + 2s > = \{0, 3, ..., s - 1, s + 2, s + 3, s + 5, ..., 2s + 1, \rightarrow ...\}
\]

(ii) If \(s = 6k + 2 \) or \(s = 6k + 5 \) then

\[
S = < 3, 3 + s, 3 + 2s > = \{0, 3, ..., s - 2, s + 1, s + 3, s + 4, ..., 2s + 1, \rightarrow ...\}
\]

100
where \(k \in \mathbb{N} \).

Theorem 2. The set of gaps of \(S \) is as follows:

(i) if \(s = 6k + 1 \) or \(s = 6k + 4 \), then

\[
H(S) = \{1, 2, 4, 5, \ldots, s, s + 1, s + 4, \ldots, 2s\}
\]

(ii) if \(s = 6k + 2 \) or \(s = 6k + 5 \), then

\[
H(S) = \{1, 2, 4, 5, \ldots, s, s + 2, s + 5, s + 8, \ldots, 2s\}
\]

where \(k \in \mathbb{N} \).

Proof. By definition, every non-positive integer \(k \) with \(k \leq s \), \(3 \nmid k \) is in \(H(S) \). That is, \(\{1, 2, 4, 5, \ldots, s\} \subseteq H(S) \). In addition, for the different states of \(s \):

(i) If \(s = 6k + 1 \) (\(k \in \mathbb{N} \)) then \(3 \nmid (s + 1) \), so \(s + 1 \in H(S) \). However, \(s + 2, s + 3 \in S \). In this case, \(s + 1 + 3t \leq 2s \) \((t \in \mathbb{N}) \). Otherwise, let \(s + 1 + 3t \notin H(S) \) for \(s + 1 + 3t \leq 2s \), then \(s + 1 + 3t \in S \). Thus, \(3 \mid (s + 1) \) since \(3 \mid (s + 1 + 3t) \) that is \(3 \mid (6k + 2) \). This is a contradiction. Therefore, \(H(S) = \{1, 2, 4, 5, \ldots, s, s + 1, s + 4, \ldots, 2s\} \).

If \(s = 6k + 4 \), then \(3 \nmid s \), but \(s + 2, s + 3 \in S \). That is \(s + 1 \in H(S) \). On the contrary, let \(s + 1 \notin H(S) \). Then \(3 \mid s + 1 \) and \(3 \mid 6k + 5 \) which is a contradiction. Thus, \(s + 1 + 3t \in H(S) \) is obtained for \(s + 1 + 3t \leq 2s \). Consequently, \(H(S) = \{1, 2, 4, 5, \ldots, s, s + 1, s + 4, \ldots, 2s\} \).

(ii) If \(s = 6k + 2 \), then \(3 \mid s + 1 \) and \(s + 1, s + 3, s + 4 \in S \); but \(s + 2 \notin S \). In order words, \(s + 2 \in H(S) \). We assume that \(s + 2 \notin H(S) \). Then, \(3 \mid s + 2 \), that is \(3 \mid 6k + 4 \). Hence, \(3 \mid 4 \) which gives a contradiction. Thus, we have that \(H(S) = \{1, 2, 4, 5, \ldots, s, s + 2, s + 5, s + 8, \ldots, 2s\} \).

If \(s = 6k + 5 \) then \(s + 1, s + 3 \in S \). But \(s + 2 \notin S \), i.e. \(s + 2 \in H(S) \). Conversely, \(s + 2 \notin H(S) \). Then \(3 \mid s + 2 \) and \(3 \mid 6k + 7 \) which is a contradiction. Hence, \(s + 2 + 3t \in H(S) \) for \(s + 1 + 3t \leq 2s \). Thus, \(H(S) = \{1, 2, 4, 5, \ldots, s, s + 2, s + 5, s + 8, \ldots, 2s\} \) is obtained.

Theorem 3. The set of fundamental gaps of \(S \) is given as follows:

(a) if \(s = 6k + 1 \) or \(s = 6k + 5 \), then \(FH(S) = \left\{ \frac{3 + s}{2}, \frac{3 + s}{2} + 3, \ldots, 2s \right\} \)

(b) if \(s = 6k + 2 \) or \(s = 6k + 4 \), then \(FH(S) = \left\{ \frac{6 + s}{2}, \frac{6 + s}{2} + 3, \ldots, 2s \right\} \)

where \(k \in \mathbb{N} \).
Proof. (a) We must firstly show that \(T = \{ \frac{3+s}{2}, \frac{3+s}{2}+3, \ldots, 2s \} \neq \emptyset \) and \(T \subseteq H(S) \): Thus it suffices to prove \(\frac{3+s}{2} \notin S \) (since \(n = \frac{3+s}{2} \in H(S) \) for \(\frac{3+s}{2} \notin S \) and \(n + 3t \leq 2s \) \((t \in \mathbb{N}) \)). Conversely, assume that \(\frac{3+s}{2} \in S \). In this case, \(\frac{3+s}{2} = 3n_1 + (3+s)n_2 + (3+2s)n_3 \) \((n_1, n_2, n_3 \in \mathbb{N}) \). Thus, we write \(s = 3(2n_1 - 1) + (3+s)2n_2 + (3+2s)2n_3 \in S \). But this yields \(s \in S \) which contradicts with the definition of \(S \). Now let us show that \(T = FH(S) \):

\[
x \in T \implies x = \frac{3+s}{2} + 3t, \; (t \in \mathbb{N})
\]

\[
\implies 2x = 2\left(\frac{3+s}{2} + 3t \right) \text{ and } 3x = 3\left(\frac{3+s}{2} + 3t \right)
\]

\[
\implies 2x = 3 + s + 6t \text{ and } [3x = 3\left(\frac{3+6k+1}{2} + 3t \right) \text{ or } 3x = 3\left(\frac{3+6k+5}{2} + 3t \right)]
\]

\[
\implies 2x \in S \text{ and } [3x = 6 + 9k + 9t \text{ or } 3x = 12 + 9k + 9t]
\]

\[
\implies 2x \in S \text{ and } 3x \in S
\]

\[
\implies x \in FH(S).
\]

For the other implication, let us show that \(FH(S) \subseteq T \). Conversely, assume that \(FH(S) \notin T \). Then, \(\exists y \in FH(S) \) \(\ni y \notin T \), i.e., \(y \notin H(S) \), which gives \(y \in S \). This is a contradiction. As a result \(FH(S) = T \).

(b) \(A = \{ \frac{6+s}{2}, \frac{6+s}{2}+3, \ldots, 2s \} \) is a subset of \(H(S) \): For this, it suffices to prove \(\frac{6+s}{2} \notin S \) (since \(v = \frac{6+s}{2} \in H(S) \) for \(\frac{6+s}{2} \notin S \), and \(v + 3t \leq 2s \) \((t \in \mathbb{N}) \)). Conversely, assume that \(\frac{6+s}{2} \in S \). In this case, \(\frac{6+s}{2} = 3u_1 + (3+s)u_2 + (3+2s)u_3 \) \((u_1, u_2, u_3 \in \mathbb{N}) \). Thus, we write \(s = 3(2u_1 - 1) + (3+s)2u_2 + (3+2s)2u_3 \in S \). This contradicts with the definition of \(S \). Furthermore, \(T = FH(S) \):

\[
x \in T \implies x = \frac{6+s}{2} + 3t, \; (t \in \mathbb{N})
\]

\[
\implies 2x = 2\left(\frac{6+s}{2} + 3t \right) \text{ and } 3x = 3\left(\frac{6+s}{2} + 3t \right)
\]

\[
\implies 2x = 6 + s + 6t \text{ and } [3x = 3\left(\frac{6+6k+2}{2} + 3t \right) \text{ or } 3x = 3\left(\frac{6+6k+4}{2} + 3t \right)]
\]

\[
\implies 2x \in S \text{ and } [3x = 12 + 9k + 9t \text{ or } 3x = 15 + 9k + 9t]
\]

\[
\implies 2x \in S \text{ and } 3x \in S
\]

\[
\implies x \in FH(S).
\]

On the other hand, \(FH(S) \subseteq T \) can be shown as in (a).

Corollary 4.

(i) If \(s \) is odd, then \(\sharp(FH(S)) = \frac{s+1}{2} \).

(ii) If \(s \) is even, then \(\sharp(FH(S)) = \frac{s}{2} \).
Proof. By Theorem 3, we have that $FH(S) = \{ \frac{3s+3}{2}, \frac{3s+3}{2} + 3, ..., 2s \}$ and $FH(S) = \{ \frac{6s+3}{2}, \frac{6s+3}{2} + 3, ..., 2s \}$ are obtained where s is odd and even, respectively. Thus, if s is odd, then $\sharp(FH(S)) = 2s - \frac{3s+3}{2} + 1 = \frac{3s-3}{6} + 1 = \frac{s+1}{2}$. If s is even, then $\sharp(FH(S)) = 2s - \frac{6s+3}{2} + 1 = \frac{3s-6}{6} + 1 = \frac{s}{2}$.

Corollary 5. The following corollary a result of Corollary 4
(i) If s is odd, then $\sharp(H(S)) = \frac{2s-3+1}{3} = \frac{s+1}{2}$.
(ii) If s is even, then $\sharp(H(S)) = \frac{2s-6+1}{6} = \frac{s}{2}$.

Proposition 6. The set of special gaps of S is $\{2s\}$, that is, $SH(S) = \{2s\}$.

Proof. We can write that $Ap(S, 3) = \{0, 3 + s, 2s + 3\}$ and

Maximals $\leq_S (Ap(S, 3)) = \left\{ \frac{2s}{2} + 3, 2s + 3 \right\}$

from [5] and [9], respectively. Thus, we write that

$SH(S) = \{x \in Pg(S) : 2x \in S\}$

since $Pg(S) = \{s, 2s\}$.

Corollary 7. $SH(S) \subset FH(S) \subset H(S)$.

Example 8. Let $S = \langle 3, 7, 11 \rangle = \{0, 3, 6, 7, 9, 10, 11, ... \}$ be a pseudo symmetric numerical semigroup for $s = 4$. Since $s = 4 = 6.0 + 4$; $g(S) = 8$, $Ap(S, 3) = \{0, 3 + 4, 2.4 + 3\} = \{0, 7, 11\}$, and $H(S) = \{1, 2, 4, 5, 8\}$, $FH(S) = \{\frac{6+4}{2}, \frac{6+4}{2} + 3\} = \{5, 8\}$, $SH(S) = \{8\}$.

Thus, $\sharp(H(S)) = 4 + 1 = 5 = 2\sharp(FH(S)) + 1$ and $\{8\} \subset \{5, 8\} \subset \{1, 2, 4, 5, 8\}$.

References

Sedat İlhan
Department of Mathematics
University of Dicle
Faculty of Science 21280, Diyarbakır, Turkey
email: sedati@dicle.edu.tr

Meral Süer
Department of Mathematics
University of Batman
Faculty of Science and Literature, Batman, Turkey
email: meral.suer@batman.edu.tr