IDEALS IN THE BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS

A. Shokri

ABSTRACT. We study an interesting class of Banach function algebras of vector-valued operators on compact metric spaces, and investigate certain ideals of the Lipschitz algebras. In this paper, we consider a nonempty compact metric space (X,d) and a commutative unital Banach algebra $(B, \| \cdot \|)$ over the scalar field $\mathbb{F} (= \mathbb{R}$ or $\mathbb{C})$. At first, we define the B-valued α-Lipschitz operator algebras $\text{Lip}_\alpha(X,B)$ and $\text{lip}_\alpha(X,B)$, where $\alpha \in (0,1]$. Then we characterize the norm closed ideals of $\text{lip}_\alpha(X,B)$, and primary ideals of $\text{Lip}_\alpha(X,B)$.

2010 Mathematics Subject Classification: 16D25, 46H10, 46J10, 47B48.

Keywords: Ideal, Closed ideal, Primary ideal, Lipschitz operator.

1. Introduction

Throughout this paper, let (X,d) be a compact metric space which has at least two elements, $(B, \| \cdot \|)$ be a commutative unital Banach algebra over the scalar field $\mathbb{F}(= \mathbb{R}$ or $\mathbb{C})$, $C(X,B)$ be the set of all B-valued continuous operators and $C_b(X,B)$ be the set of all bounded B-valued continuous operators on X, and also $\alpha \in \mathbb{R}$ with $0 < \alpha \leq 1$. When $B = \mathbb{F}$, we write $C(X)$ instead of $C(X,B)$.

The dual space of B is the vector space B^* whose elements are the continuous linear functionals on B. The set of all multiplicative functionals on B is called spectrum of B; we denote it by $\sigma(B)$. Suppose that throughout this article $\Lambda \in \sigma(B)$ is arbitrary and fixed. Since $\sigma(B)$ is a subset of the closed unit ball of B^*, $\| \Lambda \|$ is bounded, where $\| \Lambda \| = \sup \{ | \Lambda x | : x \in B, \| x \| \leq 1 \}$.

When $B = \mathbb{F}$, take Λ as the identity function $\Lambda x = x$.

Consider the set Y as follows

$$Y := \{(x,y) : x,y \in X, x \neq y\}.$$ (1)
For an operator $f : X \to B$, and any $(x, y) \in Y$, define
\[
L_\alpha^\circ f(x, y) := \frac{|(\Lambda of)(x) - (\Lambda of)(y)|}{d^\alpha(x, y)},
\]
where $d^\alpha(x, y) = (d(x, y))^\alpha$, and define
\[
p_\alpha(f) := \sup_{x \neq y} L_\alpha^\circ f(x, y),
\]
which is called the \textit{Lipschitz constant} of f. Also, for $0 < \alpha \leq 1$ define
\[
\text{Lip}_\alpha(X, B) := \{ f \in C_b(X, B) : p_\alpha(f) < +\infty \},
\]
and for $0 < \alpha < 1$, define
\[
\text{lip}_\alpha(X, B) := \{ f \in \text{Lip}_\alpha(X, B) : \lim_{d(x, y) \to 0} L_\alpha^\circ f(x, y) = 0 \}.
\]
The elements of $\text{Lip}_\alpha(X, B)$ and $\text{lip}_\alpha(X, B)$ are called \textit{big} and \textit{little} α-Lipschitz B-valued operators, respectively.

Now, for each $\lambda \in F$ and $f, g \in C(X, B)$ define
\[
(f + g)(x) := f(x) + f(x), \quad (\lambda f)(x) := \lambda f(x), \quad \forall x \in X,
\]
\[
\| f \|_{\infty} := \sup_{x \in X} \| f(x) \|,
\]
and for any $f \in \text{Lip}_\alpha(X, B)$ define
\[
\| f \|_\alpha := p_\alpha(f) + \| f \|_{\infty}.
\]
It is easy to see that $(C(X, B), \| . \|_{\infty})$ becomes a Banach algebra over F.

Cao, Zhang and Xu in [9] proved that $(\text{Lip}_\alpha(X, B), \| . \|_\alpha)$ is a Banach space over F and $(\text{lip}_\alpha(X, B), \| . \|_\alpha)$ is a closed linear subspace of $(\text{Lip}_\alpha(X, B), \| . \|_\alpha)$, when B is a Banach space.

We studied some of the properties of these algebras in [16, 17, 18, 19]. Also some properties of these algebras were studied by certain mathematicians including Abtahi [2], Ranjbary and Rejali [13].

Note that for $\alpha = 1$ and $B = F$, the space $\text{Lip}_1(X, F)$ consisting of all Lipschitz functions from X into $F(= \mathbb{R}$ or $\mathbb{C})$ has a series of interesting and important properties, which has been studied by many mathematicians. Including the characterization of the ideals of these algebras in [1, 3 - 8, 11, 12, 14, 15] were researched and studied. In [10, 20] some properties of Lipschitz scalar-valued functions are mentioned.

Finally, in this paper we study the algebras of α-Lipschitz B-valued operators, and we will characterize the norm closed ideals of $\text{lip}_\alpha(X, B)$, and primary ideals of $\text{Lip}_\alpha(X, B)$.

34
2. Norm closed ideals

In this section, we characterize the norm closed ideals of little α-Lipschitz operator algebras $\text{lip}_\alpha(X,B)$. So suppose that $\alpha \in \mathbb{R}$ with $0 < \alpha < 1$.

In the complex plan \mathbb{C}, let $D(0,r)$ be the closed disk with center at the origin and radius $r > 0$. Define the map $\Pi_r : \mathbb{C} \to D(0,r)$ by

$$\Pi_r(z) = \begin{cases} \frac{z}{r} & ; \quad |z| \leq r \\ \frac{|z|}{r} & ; \quad |z| > r. \end{cases} \quad (3)$$

Lemma 1. Let $f \in \text{lip}_\alpha(X,B)$, and define $\Lambda_0 f := \Pi_1 \Lambda f$; $n \in \mathbb{N}$. Then $\Lambda_0 f_n \in \text{lip}_\alpha(X,B)$ for any $n \in \mathbb{N}$.

Proof. Since $f \in \text{lip}_\alpha(X,B)$, for any $(x,y) \in Y$ (Y is defined in (1)) we have

$$\lim_{d(x,y) \to 0} \left| \frac{(\Lambda_0 f)(x) - (\Lambda_0 f)(y)}{d^\alpha(x,y)} \right| = 0.$$

Then for each $n \geq 1$ and $(x,y) \in Y$, we have

$$\lim_{d(x,y) \to 0} \left| \frac{(\Lambda_0 f_n)(x) - (\Lambda_0 f_n)(y)}{d^\alpha(x,y)} \right| = \lim_{d(x,y) \to 0} \left| \frac{\Pi_1 \frac{1}{n} (\Lambda_0 f)(x) - \Pi_1 \frac{1}{n} (\Lambda_0 f)(y)}{d^\alpha(x,y)} \right|. \quad (4)$$

Now we have three case:

Case 1. Suppose $|(|(\Lambda_0 f)(x)| \leq \frac{1}{n}$ and $|(|(\Lambda_0 f)(y)| \leq \frac{1}{n}$. Then

$$\lim_{d(x,y) \to 0} \left| \frac{(\Lambda_0 f)(x) - (\Lambda_0 f)(y)}{d^\alpha(x,y)} \right| = 0. \quad (4)$$

Case 2. Suppose $|(|(\Lambda_0 f)(x)| > \frac{1}{n}$ and $|(|(\Lambda_0 f)(y)| > \frac{1}{n}$. Then

$$\lim_{d(x,y) \to 0} \left| \frac{\frac{1}{n}(\Lambda_0 f)(x) - \frac{1}{n}(\Lambda_0 f)(y)}{(\Lambda_0 f)(x) - (\Lambda_0 f)(y)} \right| = \frac{1}{n} \left(\frac{d^\alpha(X,B)}{(\Lambda_0 f)(x)} \right), \quad (5)$$

if $|(|(\Lambda_0 f)(x)| = |(|(\Lambda_0 f)(y)|$, then

$$\lim_{d(x,y) \to 0} \left| \frac{(\Lambda_0 f)(x) - (\Lambda_0 f)(y)}{d^\alpha(x,y)} \right| = 0,$$

and so (4) = 0.
If \(|(\Lambda_0 f)(x)| \neq |(\Lambda_0 f)(y)| \), then we can assumed that \(|(\Lambda_0 f)(x)| > |(\Lambda_0 f)(y)| \).

Therefore

\[
(5) \leq \frac{1}{n} \frac{1}{|(\Lambda_0 f)(y)|} \times \lim_{d(x,y) \to 0} \frac{|(\Lambda_0 f)(x) - (\Lambda_0 f)(y)|}{d^\alpha(x,y)} = 0,
\]

and so (4) = 0.

Case 3. Suppose \(|(\Lambda_0 f)(x)| > \frac{1}{n}, \ |(\Lambda_0 f)(y)| \leq \frac{1}{n} \). Then

\[
(4) = \lim_{d(x,y) \to 0} \frac{\frac{1}{n} |(\Lambda_0 f)(x)|}{|(\Lambda_0 f)(x)| - (\Lambda_0 f)(y)} \leq \lim_{d(x,y) \to 0} \frac{|(\Lambda_0 f)(x) - (\Lambda_0 f)(y)|}{d^\alpha(x,y)} = 0,
\]

and so (4) = 0.

Consequently, in any case we have

\[
\lim_{d(x,y) \to 0} \frac{|(\Lambda_0 f_n)(x) - (\Lambda_0 f_n)(y)|}{d^\alpha(x,y)} = 0 ; \ n \in \mathbb{N}.
\]

This means for any \(n \in \mathbb{N} \), \(\Lambda_0 f_n \in \text{lip}_\alpha(X,B) \). \(\triangle \)

Let \(H \) be a non-empty closed subset of \(X \). Put

\[
i(H) := \{ f \in \text{lip}_\alpha(X,B) : (\Lambda_0 f)|_H = 0 \},
\]

where \((\Lambda_0 f)|_H \) is the restriction of \(\Lambda_0 f \) to \(H \). It is easy to see that, \(i(H) \) is an ideal of \(\text{lip}_\alpha(X,B) \).

Lemma 2. Suppose \(H \) is a closed subset of \(X \), and \(f \in i(H) \). Then there is a sequence \(\{f_n\} \subset \text{lip}_\alpha(X,B) \) such that each \(f_n \) is equal to \(f \) on a neighborhood of \(H \), and \(\lim_{n \to +\infty} p_\alpha(\Lambda_0 f_n) = 0 \).

Proof. For any \(n \in \mathbb{N} \), define \(\Lambda_0 f_n := \Pi_1 \frac{1}{n} (\Lambda_0 f) \), where the map \(\Pi_1 \) is defined in (3).

Then for each \(n \in \mathbb{N} \), \(\Lambda_0 f_n \in \text{lip}_\alpha(X,B) \) by Lemma 1. Since \(f \in i(H) \), \((\Lambda_0 f)|_H = 0 \).

So for any \(n \in \mathbb{N} \) and \(x \in H \), \(|(\Lambda_0 f_n)(x)| < \frac{1}{n} \). Therefor on a neighborhood of \(H \), we have

\[
\Lambda(f_n(x)) = (\Lambda_0 f_n)(x) = \Pi_1 \frac{1}{n} ((\Lambda_0 f)(x)) = (\Lambda_0 f)(x) = \Lambda(f(x)).
\]

Since \(\Lambda \in \sigma(B) \) is arbitrary, \(f_n(x) = f(x) \) on a neighborhood of \(H \), where \(n \in \mathbb{N} \).
Now, since for any \(n \in \mathbb{N} \) we have \(\Lambda of_n \in \text{lip}_\alpha(X, B) \), for each \(\epsilon > 0 \) there exists \(\delta > 0 \) such that for any \((x, y) \in Y \) (\(Y \) is defined in (1)) with \(d(x, y) < \delta \) we have

\[
\frac{|(\Lambda of_n)(x) - (\Lambda of_n)(y)|}{d^\alpha(x, y)} < \epsilon.
\]

Especially for \(\epsilon = \frac{1}{n} \) (to large enough \(n \)) we have

\[
\frac{|(\Lambda of_n)(x) - (\Lambda of_n)(y)|}{d^\alpha(x, y)} < \frac{1}{n}.
\]

So, for to large enough \(n \), \(p_\alpha(\Lambda of_n) < \frac{1}{n} \). Therefore \(\lim_{n \to +\infty} p_\alpha(\Lambda of_n) = 0 \). \(\triangle \)

For each subset \(E \subset \text{lip}_\alpha(X, B) \), let its hull be the set

\[
hull(E) := \{ x \in X : (\Lambda of)(x) = 0, \ \forall f \in E \}.
\]

A subset \(E \) of \(\text{lip}_\alpha(X, B) \) is a norm closed ideal, if it is an ideal and it is closed in the topology induced by the norm on \(\text{lip}_\alpha(X, B) \).

Lemma 3. Let \(E \) be a norm closed ideal of \(\text{lip}_\alpha(X, B) \), and suppose \(f \in \text{lip}_\alpha(X, B) \) such that \(\Lambda of \) vanishes in a neighborhood of \(hull(E) \). Then \(f \in E \).

Proof. Let \(H := hull(E) \), \(\epsilon > 0 \), and \((\Lambda of)(x) = 0 \) for any \(x \in X \) such that \(d(x, H) < \epsilon \), where \(d(x, H) := \inf \{ d(x, y) : y \in H \} \). Suppose that \(G := \{ x \in X : d(x, H) \geq \frac{\epsilon}{2} \} \). It is obvious that \(G \) is a compact subset of \(X \), and for any \(x \in G \) there is a function \(f_x \in E \) that \(\Lambda of_{f_x} \) is nonzero on an open neighborhood of \(x \). As these neighborhoods cover \(G \), by compactness. So we can find a finite set of points \(x_1, x_2, \ldots, x_n \in G \) such that \(\Lambda og \) is nowhere zero on \(G \), where \(g := f_{x_1} + f_{x_2} + \ldots + f_{x_n} \). Then \(g \in E \) and \(g(x) \) is invertible for any \(x \in G \). Define the function \(h \in \text{lip}_\alpha(X, B) \) such that \((\Lambda oh)(x) = 0 \) for \(x \notin G \), and \(h(x) := (g(x))^{-1} f(x) \) for \(x \in G \). Then \(f = gh \) on \(G \). By ideal properties, we have \(f \in E \). \(\triangle \)

Now we prove one of the main results of the article.

Theorem 4. Let \(E \) be a norm closed ideal of \(\text{lip}_\alpha(X, B) \). Then \(E = i(H) \), where \(H = hull(E) \).

Proof. It is obvious that \(E \subseteq i(H) \). We prove that \(i(H) \subseteq E \). For this purpose, let \(f \in i(H) \) be arbitrary, so we will show that \(f \in E \).

It is clear that \(hull(E) \) is a closed subset of \(X \). So by Lemma 2, there is a sequence \(\{ f_n \} \subset \text{lip}_\alpha(X, B) \) such that \(f_n = f \) on a neighborhood of \(H \) (\(n \geq 1 \)), and
\[
\lim_{n \to +\infty} p_\alpha(\Lambda o f_n) = 0. \text{ So } \Lambda o (f - f_n) = 0 \text{ on a neighborhood of } H \ (n \geq 1). \text{ Then } f - f_n \in E \ (n \geq 1) \text{ by Lemma 3. Since } \lim_{n \to +\infty} p_\alpha(\Lambda o f_n) = 0 \text{ on a neighborhood of } H,
\]

\[
\lim_{n \to +\infty} \left| \frac{(\Lambda o f_n)(x) - (\Lambda o f_n)(y)}{d^\alpha(x, y)} \right| = 0 ; \ (x \neq y),
\]

\[
\implies \lim_{n \to +\infty} |(\Lambda o f_n)(x) - (\Lambda o f_n)(y)| = 0 ; \ (x \neq y),
\]

\[
\implies \lim_{n \to +\infty} (\Lambda o f_n)(x) = \lim_{n \to +\infty} (\Lambda o f_n)(y) ; \ (x \neq y),
\]
on neighborhood of \(H \). This relation shows that \(f_n \) is a constant function on a neighborhood of \(H \) for each \(n \geq 1 \). So, by definition of \(H = \text{hull}(E) \) and \(f \in i(H) \), we have \(\lim_{n \to +\infty} (\Lambda o f_n)(x) = 0 \) in a neighborhood of \(H \). Then \(\sup |(\Lambda o f_n)(x)| \to 0 \) on a neighborhood of \(H \). Thus \(\| \Lambda o f_n \|_\alpha \to 0 \) on a neighborhood of \(H \). On the other hand we have \(\lim_{n \to +\infty} p_\alpha(\Lambda o f_n) = 0 \), so

\[
\| \Lambda o f_n \|_\alpha = \| \Lambda o f_n \|_\infty + p_\alpha(\Lambda o f_n) \to 0
\]
on a neighborhood of \(H \).

Now define \(g_n := f - f_n \ (n \geq 1) \). Then \(\{g_n\} \subset E \), and so we have

\[
\| \Lambda o (f - g_n) \|_\alpha = \| \Lambda o f_n \|_\alpha \to 0
\]
on a neighborhood of \(H \). Since \(\Lambda \) is arbitrary, \(\| f - g_n \|_\alpha \to 0 \) on a neighborhood of \(H \). Since \(\{g_n\} \subset E \) and \(E \) is a norm closed ideal, \(f \in E \). This completes the proof. \(\Delta \)

\section*{3. Primary ideals}

In this section, we characterize the primary ideals of big \(\alpha \)-Lipschitz operator algebras \(\text{Lip}_\alpha(X, B) \). So suppose that \(\alpha \in \mathbb{R} \) with \(0 < \alpha \leq 1 \).

Let \(H \) be a non-empty closed subset of \(X \). Put

\[
I(H) := \{ f \in \text{Lip}_\alpha(X, B) : (\Lambda o f)|_H = 0 \}.
\]

Define the mapping \(\lambda \) as follows:

\[
\lambda : \text{Lip}_\alpha(X, B) \to C(Y)
\]

\[
f \mapsto \lambda f
\]
where Y is defined in (1), and $\lambda f : Y \mapsto \mathbb{F}$ with the criterion
\[
(\lambda f)(x, y) := \frac{(\Lambda of)(x) - (\Lambda of)(y)}{d^\alpha(x, y)}.
\]
Then $L_\alpha^\gamma(x, y) = \left| (\lambda f)(x, y) \right|$ for all $(x, y) \in Y$, which $L_\alpha^\gamma(x, y)$ is defined in (2). Also put
\[
J(H) := \{ f \in I(H) : \left| (\lambda f)(x, y) \right| \to 0 \quad \text{as} \quad d(x, H), d(y, H) \to 0 \}.
\]
Clearly for each ideal E in $Lip_\alpha(X, B)$ with $\text{hull}(E) = H$, we have:

Remark 1. (i) $J(H)$ is the minimum ideal, and $\overline{J(H)}$ is the minimum closed ideal of $Lip_\alpha(X, B)$, where the norm closure $\overline{J(H)}$ of $J(H)$ is the intersection of all closed sets that contain $\overline{J(H)}$.
(ii) $I(H)$ is the maximum ideal of $Lip_\alpha(X, B)$, and (iii) $J(H) \subset E \subset I(H)$.

Below we prove a theorem, which we need to prove the main result of the article.

Theorem 5. Let H be a non-empty closed subset of X. Then $J(H) = \overline{I(H)^2}$, that by $\overline{I(H)^2}$ we mean the norm closure of the set of linear combinations of products fg where $f, g \in I(H)$.

Proof. Since $J(H)$ and $\overline{I(H)^2}$ are ideals in $Lip_\alpha(X, B)$, Remark 1 implies that $J(H) \subseteq \overline{I(H)^2}$.

Now to prove the other side of the relationship, let $f, g \in I(H)$ be arbitrary such that for each $\epsilon > 0$ and any $(x, y) \in Y$
\[
\left| (\Lambda of)(x) \right| < \frac{\epsilon}{2 \ L_\alpha^\gamma(x, y)} \quad \text{and} \quad \left| (\Lambda og)(y) \right| < \frac{\epsilon}{2 \ L_\alpha^\gamma(x, y)}
\]
when $d(x, H), d(y, H) \to 0$. Then for any $(x, y) \in Y$ as $d(x, H), d(y, H) \to 0$ we have
\[|(\lambda(fg))(x,y)| = \frac{|(\Lambda o (fg))(x) - (\Lambda o (fg))(y)|}{d^\alpha(x,y)} \]
\[= \frac{|(\Lambda o f)(x) (\Lambda o g)(x) - (\Lambda o f)(y) (\Lambda o g)(y)|}{d^\alpha(x,y)} \]
\[\leq \frac{1}{d^\alpha(x,y)} \left(|(\Lambda o f)(x)| \cdot |(\Lambda o g)(x) - (\Lambda o g)(y)| \
+ |(\Lambda o g)(y)| \cdot |(\Lambda o f)(x) - (\Lambda o f)(y)| \right) \]
\[\leq |(\Lambda o f)(x)| \cdot L^\alpha_g(x,y) + |(\Lambda o g)(y)| \cdot L^\alpha_f(x,y) \]
\[< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \]

This implies that \(fg \in J(H) \). It follows that \(\overline{I(H)^2} \subseteq J(H) \), and the proof is complete. △

Let \(E \) be an ideal in \(Lip_\alpha(X,B) \). \(E \) is called primary if its hull contains exactly one point.

Now we prove the second main result of the article. The primary ideals of \(Lip_\alpha(X,B) \) are characterized as follows.

Theorem 6. Let \(a \in X \), and take \(H = \{a\} \). Suppose that \(E \) be a norm closed subspace of \(Lip_\alpha(X,B) \) such that \(J(H) \subseteq E \subseteq I(H) \). Then \(E \) is a primary ideal of \(Lip_\alpha(X,B) \). Conversely, every primary ideal of \(Lip_\alpha(X,B) \) is of this form.

Proof. Let \(f \in E \) and \(g \in Lip_\alpha(X,B) \) be arbitrary. Then \(g - (\Lambda o g)(a) \in I(H) \).

Hence, since \(J(H) = \overline{I(H)^2} \) by Theorem 2,

\[(g - (\Lambda o g)(a))f \in I(H)E \subseteq I(H)^2 \subseteq J(H) \subseteq E. \]

Thus \((g - (\Lambda o g)(a))f \in E \). Since \((\Lambda o g)(a) \) is a constant and \(f \in E \), we have \((\Lambda o g)(a)f \in E \). So \(gf \in E \). As the same way, \(fg \in E \). This shows that \(E \) is an ideal. Since

\[\text{hull}(E) = \{ x \in X : (\Lambda o f)(x) = 0, \, \forall f \in E \} = \{a\}, \]

\(E \) is clearly primary.

The converse of theorem is true by Remark 1. △

Acknowledgements.

The author thanks the valuable efforts of the respected editors of the journal and the esteemed reviewers.
REFERENCES

Abbasali Shokri
Department of Mathematics,
Ahar Branch, Islamic Azad University,
Ahar, Iran.
email: a-shokri@iau-ahar.ac.ir
shokrismath@yahoo.com