COEFFICIENT BOUNDS FOR A CERTAIN FAMILIES OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS ASSOCIATED WITH Q-ANALOGUE OF WANAS OPERATOR

T. G. Shaba, A. K. Wanas

Abstract. The motivation of the present paper is to define q-analogue of Wanas operator in geometric function theory. We also introduce certain families $T_{m,n}^{q}(t, n, \beta, q, \delta)$ and $T_{m,n}^{q}(t, n, \beta, q, \gamma)$ of holomorphic and m-fold symmetric bi-univalent functions associated with q-analogue of Wanas operator. The upper bounds for the second and third Taylor-Maclaurin coefficients for functions in each of these subfamilies are obtained. Furthermore, Several consequences of our results are pointed out based on the various special choices of the involved parameters.

2010 Mathematics Subject Classification: 30C45.

Keywords: m-fold symmetric bi-univalent functions, holomorphic functions, univalent function, q-derivative, q-Wanas operator.

1. Introduction and Definitions

Let $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disk in the complex plane and let $\mathcal{A} = \{f : \mathbb{U} \rightarrow \mathbb{C} : f$ is holomorphic in $\mathbb{U}, f(0) = 0 = f'(0) - 1\}$ be the family of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k$$

Assume that \mathcal{S} be the subfamily of \mathcal{A} consisting of all functions f univalent in \mathbb{U}.

The Koebe on-quarter theorem (see [5]) state that the image of \mathbb{U} under every function $f(z) \in \mathcal{S}$ contains a disk of radius $1/4$. Therefore, all function $f(z) \in \mathcal{S}$ has an inverse $f^{-1}(z)$ which satisfies $f^{-1}(f(z)) = z$ and $f(f^{-1}(w)) = w \ (|w| < r_0(f), \ r_0(f) \geq \frac{1}{4})$, where

$$g(w) = f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
A function \(f \in \mathcal{A} \) denoted by \(\Sigma \) is said to be bi-univalent in \(\mathbb{U} \) if both \(f^{-1}(z) \) and \(f(z) \) are univalent in \(\mathbb{U} \) (see for details [3, 4, 7, 8, 12, 14, 16, 20, 21, 24, 27, 29, 32]).

For each function \(f \in \mathcal{S} \), the function \(h(z) = (f(z^m))^{1/m} \), \((z \in \mathbb{U}, \; m \in \mathbb{N}) \) is univalent and maps the unit disk \(\mathbb{U} \) into a region with \(m \)-fold symmetry. A function is said to be \(m \)-fold symmetric (see [11] and [15]) if it has the following normalized form:

\[
f(z) = z + \sum_{k=1}^{\infty} a_{mk+1}z^{mk+1} \quad (z \in \mathbb{U}, m \in \mathbb{N}^+). \quad (3)
\]

We denote by \(\mathcal{S}_m \) the class of \(m \)-fold symmetric univalent function in \(\mathbb{U} \), which are normalized by the series expansion (3). Also, the functions in the class \(\mathcal{S} \) are one-fold symmetric.

Analogous to the concept of \(m \)-fold symmetric univalent function, here we introduced the concept of \(m \)-fold symmetric bi-univalent functions. From (3), Srivastava et al. [25] obtained the series expansion for \(f^{-1} \) as follows:

\[
g(w) = f^{-1}(w) = w - a_{m+1}w^{m+1} + [(m+1)a_{m-1}^2 - a_{2m+1}] w^{2m+1} - \frac{1}{2}(m+1)(3m+2)a_{m+1}^3 - (3m+2)a_{m+1}a_{2m+1} + a_{3m+1} \bigg] w^{3m+1} + \cdots. \quad (4)
\]

where \(f^{-1} = g \).

We denote by \(\Sigma_m \) the class of \(m \)-fold symmetric bi-univalent function in \(\mathbb{U} \). We can note that for \(m = 1 \), the formular (4) coincides with the formular (2) of the class \(\Sigma \). Some of the examples on \(m \)-fold symmetric bi-univalent functions are given as follows:

\[
\frac{1}{2} \log \left(\frac{1+z^m}{1-z^m} \right)^{1/m}, \quad [\log(1-z^m)]^{1/m} \quad \text{and} \quad \left\{ \frac{z^m}{1-z^m} \right\}^{1/m},
\]

with the corresponding inverse functions

\[
\left(\frac{e^{2w^m} - 1}{e^{2w^m} + 1} \right)^{1/m}, \quad \left(\frac{w^m}{1+w^m} \right)^{1/m} \quad \text{and} \quad \left(\frac{e^{w^m} - 1}{e^{w^m} + 1} \right)^{1/m},
\]

respectively. Recently, different researches related to this field investigated bounds for various subclasses of \(m \)-fold bi-univalent function (see [2, 6, 23, 26, 30]).

Jackson [9, 10] introduced the \(q \)-derivative operator \(D_q \) of a function as follows:

\[
D_qf(z) = \frac{f(qz) - f(z)}{(q - 1)z} \quad (5)
\]
and \(D_q f(z) = f'(0) \). In case \(f(z) = z^{\phi} \) for \(\phi \) is a positive integer, the \(q \)-derivative of \(f(z) \) is given by
\[
D_q z^{\phi} = \frac{z^{\phi} - (qz)^\phi}{(q - 1)z} = [\phi]_q z^{\phi - 1}.
\]
As \(q \to 1^- \) and \(\phi \in \mathbb{N} \), we get
\[
[\phi]_q = \frac{1 - q^\phi}{1 - q} = 1 + q + \cdots + q^{\phi} \to \phi
\]
where \((z \neq 0, \ q \neq 0) \), for more details on the concepts of \(q \)-derivative (see [1, 13, 17, 22]).

Wanas [28] in 2019 introduced the following operator, which can also be called (Wanas operator) \(W_{\alpha, \sigma}^{\alpha, \sigma} : \mathcal{A} \to \mathcal{A} \) defined by
\[
W_{\alpha, \sigma}^{\alpha, \sigma} f(z) = \sum_{j=2}^{\infty} [\Psi_j(\sigma, \alpha, \beta)]^n a_j z^j,
\]
where
\[
\Psi_j(\sigma, \alpha, \beta) = \sum_{c=1}^{\sigma} \binom{\sigma}{c} (-1)^{c+1} \left(\frac{\alpha^c + j \beta^c}{\alpha^c + \beta^c} \right),
\]
\(c, n \in \mathbb{N}_0, \beta \geq 0, \alpha \in \mathbb{R} \) and \(\alpha + \beta > 0 \).

Special cases of this operator can be found in [31].

Now \(q \to 1^- \), \([\phi]_q \to \phi \). For \(f(z) \in \mathcal{A} \), we can define \(q \)-difference Wanas operator as given below
\[
W_{1,0,q}^{0,1} f(z) = f(z)
\]
\[
W_{1,1,q}^{0,1} f(z) = z W_q f(z)
\]
\[
W_{1,n,q}^{0,1} f(z) = z W_q (W_q^{n-1} f(z))
\]
\[
W_{\alpha, \sigma}^{\alpha, \sigma} f(z) = z + \sum_{j=2}^{\infty} [\Psi_j(\sigma, \alpha, \beta)]^n a_j z^j,
\]
where
\[
\Psi_j(\sigma, \alpha, \beta) = \sum_{c=1}^{\sigma} \binom{\sigma}{c} (-1)^{c+1} \left(\frac{\alpha^c + j \beta^c}{\alpha^c + \beta^c} \right),
\]
\(c, n \in \mathbb{N}_0, \beta \geq 0, \alpha \in \mathbb{R}, \alpha + \beta > 0, 0 < q < 1, z \in \mathbb{U} \).

Lemma 1. Suppose \(l(z) \in \mathcal{P} \), the class of functions which are holomorphic in \(\mathbb{U} \) with \(\Re(l(z)) > 0 \), \((z \in \mathbb{U}) \) and have the form \(l(z) = 1 + l_1 z + l_2 z^2 + l_3 z^3 + \cdots \), \((z \in \mathbb{U}) \); then \(|l_n| \leq 2 \) for each \(n \in \mathbb{N} \).
2. COEFFICIENT ESTIMATES FOR THE FUNCTION CLASS $\mathcal{T}_{\Sigma_m}^\sigma(t, n, \beta, q, \delta)$

Definition 1. A function $f \in \Sigma_m$ given by (3) is said to be in the class $\mathcal{T}_{\Sigma_m}^\sigma(t, n, \beta, q, \delta)$ if it satisfies the following conditions:

$$\left| \arg\left(\frac{\mathcal{M}_{\beta, t, q}^\sigma f(z)}{\mathcal{M}_{\beta, n, q}^\sigma f(z)} \right) \right| < \frac{\delta\pi}{2}, \quad (10)$$

$$\left| \arg\left(\frac{\mathcal{M}_{\beta, t, q}^\sigma g(w)}{\mathcal{M}_{\beta, n, q}^\sigma g(w)} \right) \right| < \frac{\alpha\pi}{2}, \quad (11)$$

where $0 < \delta \leq 1$, $n, t \in \mathbb{N}_0$, $t \geq n$ and the function $g = f^{-1}$ is given by (4). Also $\mathcal{M}_{\beta, t, q}^\sigma f(z)$ and $\mathcal{M}_{\beta, n, q}^\sigma f(z)$ are q-Wanas operators and have the following forms:

$$\mathcal{M}_{\beta, t, q}^\sigma f(z) = z + \sum_{j=1}^{\infty} \left[\Psi_{jm+1}(\sigma, \alpha, \beta) \right]_q a_{jm+1} z^{jm+1} \quad (12)$$

and

$$\mathcal{M}_{\beta, n, q}^\sigma g(w) = w + \sum_{j=1}^{\infty} \left[\Psi_{jm+1}(\sigma, \alpha, \beta) \right]_q b_{jm+1} w^{jm+1}. \quad (13)$$

We state and prove the following results.

Theorem 2. Let $f(z)$ given by (3) be in the class $\mathcal{T}_{\Sigma_m}^\sigma(t, n, \beta, q, \delta)$ ($0 < \delta \leq 1$, $n, t \in \mathbb{N}_0$). Then

$$|a_{m+1}| \leq \frac{2\delta}{\sqrt{\delta(m+1)\left[\Psi_{2m+1}(\sigma, \alpha, \beta) \right]_q^t - \left[\Psi_{2m+1}(\sigma, \alpha, \beta) \right]_q^n} - 2\delta \left(\left[\Psi_{m+1}(\sigma, \alpha, \beta) \right]_q^{n+t} - \left[\Psi_{m+1}(\sigma, \alpha, \beta) \right]_q^n \right)^2}$$

and

$$|a_{2m+1}| \leq \frac{2\delta}{\left[\Psi_{2m+1}(\sigma, \alpha, \beta) \right]_q^t - \left[\Psi_{2m+1}(\sigma, \alpha, \beta) \right]_q^n} + \frac{2(m+1)\delta^2}{\left(\left[\Psi_{m+1}(\sigma, \alpha, \beta) \right]_q^t - \left[\Psi_{m+1}(\sigma, \alpha, \beta) \right]_q^n \right)^2}. \quad (14)$$
Proof. We can write the inequality in (10) and (11) as
\[
\frac{\mathcal{W}_{\beta,t,q}^\alpha f(z)}{\mathcal{W}_{\beta,n,q}^\alpha f(z)} = [s(z)]^\delta
\]
and
\[
\frac{\mathcal{W}_{\beta,t,q}^\alpha g(w)}{\mathcal{W}_{\beta,n,q}^\alpha g(w)} = [t(w)]^\delta
\]
respectively.

Where \(g(w) = f^{-1}\) and \(s(z), t(w)\) in \(P\) have the following series representation:

\[s(z) = 1 + s_m z^m + s_{2m} z^{2m} + s_{3m} z^{3m} + \cdots\]

and

\[t(w) = 1 + t_m w^m + t_{2m} w^{2m} + t_{3m} w^{3m} + \cdots\]

Clearly,

\[\left[s(z) \right]^\delta = 1 + \delta s_m z^m + \left(\delta s_{2m} + \frac{\delta(\delta - 1)}{2} s_m^2 \right) z^{2m} + \cdots\]

and

\[\left[t(w) \right]^\delta = 1 + \delta t_m w^m + \left(\delta t_{2m} + \frac{\delta(\delta - 1)}{2} t_m^2 \right) w^{2m} + \cdots\]

Now equating the coefficient in (10) and (11) we get

\(\left([\Psi_{m+1}(\sigma, \alpha, \beta)]^t_q - [\Psi_{m+1}(\sigma, \alpha, \beta)]^n_q \right) a_{m+1} = \delta s_m,\) (22)

\(\left([\Psi_{2m+1}(\sigma, \alpha, \beta)]^t_q - [\Psi_{2m+1}(\sigma, \alpha, \beta)]^n_q \right) a_{2m+1}\)

\(\quad - \left([\Psi_{m+1}(\sigma, \alpha, \beta)]^{n+t}_q - [\Psi_{m+1}(\sigma, \alpha, \beta)]^{2n}_q \right) a_{m+1}^2 = \delta s_{2m} + \frac{\delta(\delta - 1)}{2} s_m^2,\) (23)

\(\quad - \left([\Psi_{m+1}(\sigma, \alpha, \beta)]^{t}_q - [\Psi_{m+1}(\sigma, \alpha, \beta)]^{n}_q \right) a_{m+1} = \delta t_m,\) (24)

\(\left([\Psi_{2m+1}(\sigma, \alpha, \beta)]^t_q - [\Psi_{2m+1}(\sigma, \alpha, \beta)]^n_q \right) (m+1) a_{m+1}^2 - a_{2m+1}\)

\(\quad - \left([\Psi_{m+1}(\sigma, \alpha, \beta)]^{n+t}_q - [\Psi_{m+1}(\sigma, \alpha, \beta)]^{2n}_q \right) a_{m+1}^2 = \delta t_{2m} + \frac{\delta(\delta - 1)}{2} t_m^2.\) (25)

From equation (22) and (24), we find that

\[s_m = -t_m\] (26)
and
\[
2 \left([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^n \right)^2 a_{m+1}^2 = \delta^2(s_m^2 + t_m^2). \tag{27}
\]
Also, from (23), (25) and (27), we have
\[
(m + 1)\delta([\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^n)a_{2m+1}^2 - 2\delta([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^{n+t} - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^n) \]
\[
- \left(2 \alpha^2\right) a_{m+1}^2 = \delta(s_{2m} + t_{2m}) + \frac{\delta(\delta - 1)}{2} (t_m^2 + s_m^2) = \delta^2(s_{2m} + t_{2m}) \]
\[
+ (\delta - 1) \left([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^n \right)^2 a_{m+1}^2.
\]
Therefore, after simplifying and using Lemma 1 for the coefficient \(s_{2m} \) and \(t_{2m}\), we have (14).

For us to get the bound on \(|a_{2m+1}|\), we subtract (25) from (23) to have
\[
\left(2 \alpha^2\right) a_{2m+1} = \alpha(s_{2m} - t_{2m}) + \frac{\alpha(\alpha - 1)}{2} (t_m^2 - s_m^2). \tag{28}
\]
It follows from (26), (27) and (28)
\[
a_{2m+1} = \frac{\delta(s_{2m} - t_{2m})}{[\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^n} + \frac{(m + 1)\delta^2(t_m^2 - s_m^2)}{4([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^n)^2}. \tag{29}
\]
Taking the absolute value of (29) and using Lemma 1 for the coefficient \(s_m, s_{2m}, t_m\) and \(t_{2m}\), we have (15) which completes the proof of Theorem 2.

When \(m = 1\) and \(\sigma = \beta = 1\) which is the one-fold symmetric bi-univalent functions, Theorem 2 gives the following corollary:

Corollary 3. Let \(f(z)\) given by (3) be in the class \(T_{2}^{\delta}(t, n, 1, q, \delta)\) \((0 < \delta \leq 1, n, t \in \mathbb{N}_0, \alpha > -1)\). Then
\[
|a_2| \leq \frac{2\delta}{\sqrt{2\delta \left(\left[\frac{2\alpha^2+3}{\alpha+1} \right]_q^t - \left[\frac{2\alpha^2+3}{\alpha+1} \right]_q^n \right) - 2\delta([2]_q^{n+t} - [2]_q^n) - (1 - \delta)([2]_q - [2]_q^n)^2}}
\]
and
\[
|a_{2m+1}| \leq \frac{2\delta}{\left[\frac{2\alpha^2+3}{\alpha+1} \right]_q^t - \left[\frac{2\alpha^2+3}{\alpha+1} \right]_q^n} + \frac{4\delta^2((2]_q - [2]_q^n)^2}.}
\]

30
When \(m = \sigma = 1 \) and \(\alpha = 1 - \beta \) which is the one-fold symmetric bi-univalent functions, Theorem 2 gives the following corollary:

Corollary 4. Let \(f(z) \) given by (3) be in the class \(T_{\Sigma}^{1-\beta}(t,n,q,\delta) \) (0 < \(\delta \leq 1 \), \(n, t \in \mathbb{N}_0 \)). Then

\[
|a_2| \leq \frac{2\delta}{\sqrt{2\delta([2 + \beta]^t_q - [2 + \beta]^n_q) - 2\delta([2]^t_q - [2]^n_q)^2}}
\]

and

\[
|a_{2n+1}| \leq \frac{2\delta}{[2 + \beta]^t_q - [2 + \beta]^n_q} + \frac{4\delta^2}{([2]^t_q - [2]^n_q)^2}.
\]

Remark 1. In Theorem 2, if we choose

1. \(q = 1, \sigma = \beta = 1 \) and \(\alpha = 0 \) then we have results determined by Seker and Taymur [18], Theorem 2.

2. \(m = q = 1, \sigma = \beta = t = 1 \) and \(\alpha = n = 0 \) then we have results determined by Brannan and Taha [3], Theorem 2.

3. \(m = q = 1, \sigma = \beta = 1 \) and \(\alpha = 0 \) then we have results determined by Seker [19], Theorem 2.

3. **Coefficient estimates for the function class** \(T_{\Sigma_m}^{\sigma,\alpha}(t,n,\beta,q,\gamma) \)

Definition 2. A function \(f \in \Sigma_m \) given by (3) is said to be in the class \(T_{\Sigma_m}^{\sigma,\alpha}(t,n,\beta,q,\gamma) \) if it satisfies the following conditions:

\[
\Re \left\{ \frac{M_{\beta,t,q}^{\alpha,\sigma} f(z)}{M_{\beta,n,q}^{\alpha,\sigma} f(z)} \right\} > \gamma; \tag{30}
\]

\[
\Re \left\{ \frac{M_{\beta,t,q}^{\alpha,\sigma} g(w)}{M_{\beta,n,q}^{\alpha,\sigma} g(w)} \right\} > \gamma; \tag{31}
\]

where \(0 \leq \gamma < 1, n, t \in \mathbb{N}_0, t \geq n \) and the function \(g = f^{-1} \) is given by (4).

We state and prove the following results.
Theorem 5. Let \(f(z) \) given by (3) be in the class \(T_{\Sigma_m}^{\sigma,\alpha}(t,n,\beta,q,\gamma) \) \((0 \leq \gamma < 1, n,t \in \mathbb{N}_0)\). Then

\[
|a_{m+1}| \leq 2 \left(\frac{1 - \gamma}{(m+1) \left([\Psi_{2m+1}^{(1)}(\sigma,\alpha,\beta)]_q^t - [\Psi_{2m+1}^{(1)}(\sigma,\alpha,\beta)]_q^n \right) + 2 \left([\Psi_{m+1}^{(1)}(\sigma,\alpha,\beta)]_q^n - [\Psi_{m+1}^{(1)}(\sigma,\alpha,\beta)]_q^{2n} \right)} \right).
\]

and

\[
|a_{2m+1}| \leq \frac{2(1 - \gamma)}{[\Psi_{2m+1}^{(1)}(\sigma,\alpha,\beta)]_q^n - [\Psi_{2m+1}^{(1)}(\sigma,\alpha,\beta)]_q^n} + \frac{(m+1)(1 - \gamma)^2}{([\Psi_{m+1}^{(1)}(\sigma,\alpha,\beta)]_q^n - [\Psi_{m+1}^{(1)}(\sigma,\alpha,\beta)]_q^{2n})^2}.
\]

Proof. First of all, the argument inequality in (30) and (31) can be written in their equivalent forms as:

\[
\frac{\mathfrak{M}^{\sigma,\alpha,\beta}}{\mathfrak{M}^{\sigma,\alpha,\beta}} f(z) = \gamma + (1 - \gamma) s(z)
\]

and

\[
\frac{\mathfrak{M}^{\sigma,\alpha,\beta}}{\mathfrak{M}^{\sigma,\alpha,\beta}} g(w) = \gamma + (1 - \gamma) t(w).
\]

respectively. Where \(s(z), t(w) \in \mathcal{P} \) and have the forms

\[
s(z) = 1 + s_m z^m + s_{2m} z^{2m} + s_{3m} z^{3m} + \cdots
\]

and

\[
t(w) = 1 + t_m w^m + t_{2m} w^{2m} + t_{3m} w^{3m} + \cdots
\]

Clearly,

\[
\gamma + (1 - \beta \gamma) s(z) = 1 + (1 - \gamma) s_m z^m + (1 - \gamma) s_{2m} z^{2m} + \cdots
\]

and

\[
\gamma + (1 - \gamma) t(w) = 1 + (1 - \gamma) t_m w^m + (1 - \gamma) t_{2m} w^{2m} + \cdots.
\]
Now equating the coefficient in (34) and (35), we get

\[
([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^n) a_{m+1} = (1 - \gamma) s_m, \tag{40}
\]

\[
([\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^n) a_{2m+1}
- ([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^{n+t} - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^{2n}) a_{m+1}^2 = (1 - \gamma) s_{2m}, \tag{41}
\]

\[
- ([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^n - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^n) a_{m+1} = (1 - \gamma) t_m, \tag{42}
\]

\[
([\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^n) ((m + 1)a_{m+1}^2 - a_{2m+1})
- ([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^{n+t} - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^{2n}) a_{m+1}^2 = (1 - \gamma) t_{2m}. \tag{43}
\]

From (40) and (42), we get

\[
s_m = -t_m \tag{44}
\]

and

\[
2 ([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^n)^2 a_{m+1}^2 = (1 - \gamma)^2 (s_m^2 + t_m^2). \tag{45}
\]

Also, adding (41) and (43), we have

\[
(m + 1)([\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^n) a_{2m+1}^2
- ([\Psi_{m+1}(\sigma, \alpha, \beta)]_q^{n+t} - [\Psi_{m+1}(\sigma, \alpha, \beta)]_q^{2n}) a_{m+1}^2
= (1 - \gamma) (s_{2m} + t_{2m})
\]

Therefore, after simplifying and applying Lemma 1 for the coefficient \(s_{2m}\) and \(t_{2m}\), we obtain (32).

Next, in order to find the bound on \(|a_{2m+1}|\), by subtracting (43) from (41), we have

\[
[\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^t - [\Psi_{2m+1}(\sigma, \alpha, \beta)]_q^n

\left(2a_{2m+1} - (m + 1)a_{m+1}^2\right) = (1 - \gamma)(t_{2m} - s_{2m}). \tag{46}
\]

Applying (45) and Lemma 1 once again for coefficients \(s_m, s_{2m}, t_m\) and \(t_{2m}\), we have (33) which completes the proof of Theorem 5.

When \(m = 1\) and \(\sigma = \beta = 1\) which is the one-fold symmetric bi-univalent functions, Theorem 5 gives the following corollary:
Corollary 6. Let \(f(z) \) given by (3) be in the class \(T^{\alpha}_t(t, n, q, \gamma) \) \((0 \leq \gamma < 1, n, t \in \mathbb{N}_0, \alpha > -1)\). Then

\[
|a_{m+1}| \leq 2 \sqrt{\frac{1 - \gamma}{2 \left(\left\lfloor \frac{2\alpha + 3}{\alpha + 1} \right\rfloor_q - \left\lfloor \frac{2\alpha + 3}{\alpha + 1} \right\rfloor_n^q \right) - 2 \left(\left\lfloor \frac{n+t}{q} \right\rfloor^q - \left\lfloor \frac{2n}{q} \right\rfloor^q \right)}}
\]

and

\[
|a_{2m+1}| \leq \frac{2(1 - \gamma)}{\left\lfloor \frac{2\alpha + 3}{\alpha + 1} \right\rfloor_q - \left\lfloor \frac{2\alpha + 3}{\alpha + 1} \right\rfloor_n^q} + \frac{2(1 - \gamma)^2}{\left(\left\lfloor \frac{t}{q} \right\rfloor - \left\lfloor \frac{2n}{q} \right\rfloor^q \right)^2}.
\]

When \(m = \sigma = 1 \) and \(\alpha = 1 - \beta \) which is the one-fold symmetric bi-univalent functions, Theorem 5 gives the following corollary:

Corollary 7. Let \(f(z) \) given by (3) be in the class \(T^{1-\beta}_t(t, n, q, \gamma) \) \((0 \leq \gamma < 1, n, t \in \mathbb{N}_0)\). Then

\[
|a_{m+1}| \leq 2 \sqrt{\frac{1 - \gamma}{2 \left(\left\lfloor 2 + \beta \right\rfloor_q - \left\lfloor 2 + \beta \right\rfloor_n^q \right) - 2 \left(\left\lfloor \frac{n+t}{q} \right\rfloor^q - \left\lfloor \frac{2n}{q} \right\rfloor^q \right)}}
\]

and

\[
|a_{2m+1}| \leq \frac{2(1 - \gamma)}{\left\lfloor 2 + \beta \right\rfloor_q - \left\lfloor 2 + \beta \right\rfloor_n^q} + \frac{2(1 - \gamma)^2}{\left(\left\lfloor \frac{t}{q} \right\rfloor - \left\lfloor \frac{2n}{q} \right\rfloor^q \right)^2}.
\]

Remark 2. In Theorem 5, if we choose

1. \(q = 1, \sigma = \beta = 1 \) and \(\alpha = 0 \) then we have results determined by Seker and Taymur [18], Theorem 2).
2. \(m = q = 1, \sigma = \beta = t = 1 \) and \(\alpha = n = 0 \) then we have results determined by Brannan and Taha [3], Theorem 2).
3. \(m = q = 1, \sigma = \beta = 1 \) and \(\alpha = 0 \) then we have results determined by Seker [19], Theorem 2).
References

Timilehin Gideon Shaba
Department of Mathematics, University of Ilorin,
P. M. B. 1515, Ilorin, Nigeria.
email: shabatimilehin@gmail.com

Abbas Kareem Wanas
University of Al-Qadisiyah, College of science,
Department of Mathematics, Al Diwaniyah,
Al-Qadisiyah, Iraq.
email: abbas.kareem.w@qu.edu.iq