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Abstract. The classification of von Neumann algebras relative to a group
of automorphisms is introduced. It is shown that for certain classes of
groups of automorphisms of von Neumann algebras there exist mappings
similar to those of a centre valued G-trace. The G-dimension is introduced
and the equivalence of G-finiteness and the existence of G-dimension func-
tion is studied. We introduce the theory with some articular cases, in more
general set up. Instead of considering group of automorphisms, we shall
consider groups of automorphisms under an action α.
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1 Introduction

Kovacs and Szucs ([8]) introduced the notion of G-finiteness and provided a char-
acterization of G-finite von Neumann algebras. In Kadison and Ringrose ([7]), the
result “a von Neumann algebra is finite if and only if it has a dimension function” is
proved. To define the finiteness and for the classification of von Neumann algebras,
they were mainly using the group of unitary elements. There are studies in which
arbitrary groups have been made use to define finiteness. Recently, in 2008, Balasub-
ramani and Ravindran ([2], [3]) had introduced a G-dimension function and proved
some results similar to the classical case.

2 Main results

Definition 2.1. Let M be a von Neumann algebra, G a group of automorphisms
in M, then the fixed point algebra MG is defined as the set of all a ∈ M such that
t (a) = a for t ∈ G. Denote P as the set of all projections in M .

Theorem 2.2. Let M be a von Neumann algebra. If G is either finite group or
compact abelian group of automorphisms of M , MG is the fixed point algebra of M
under G then there exists a mapping T : M → MG having the following properties.
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i. T is linear
ii. T is invariant under G

iii. T fixes elements of G
iv. T is σ-weakly continuous and
v. T is positive

Proof. Suppose G is finite, say G = {g1, g2, . . . , gn}. αg denotes the automorphism
corresponding to the element g ∈ G. Define T on M as

T (a) =
1
n

n∑

i=1

αgi
(a) for a ∈ M.

Then T has the properties stated in the theorem.
Now let G be a compact abelian group of automorphisms of M under an action

α. Being an action, g → 〈αg(a), ϕ〉 is a bounded (bounded by ‖α‖ ‖φ‖) continuous
function, where 〈αg(a), ϕ〉 stands for ϕ (αg) (a). So

ϕ →
∫

G

〈αg (a) , ϕ〉 dµ (g)

is a bounded linear functional on M∗, the pre-dual of M , of norm at most ‖µ‖ ‖a‖ ,
where µ is a normalized Haar measure on G and ‖µ‖ = Sup {∑n

i=1 |µ Ei| such that
{Ei}n

i=1 is a Borel partition of G. Since (M∗)
∗ = M , ∃ a unique element in M∗, which

we shall denote by T (a), such that ‖T (a)‖ =‖µ‖ ‖a‖ and

〈T (a) , ϕ〉 =
∫

G

〈αg (a) , ϕ〉 dµ (g)

for a ∈ M and ϕ in M∗. Using the translation invariance and the normality of Haar
measure and linearity of automorphisms, it can be shown that the mapping a →
T (a) is from M to MG, T is linear, T is invariant under G and T fixes elements
of MG. Since the automorphisms are positive mappings, T will become positive
also. To prove T is σ-weakly continuous, it is enough to prove that φ0T is in M∗.
Again this can be done by proving that φ0T is in(M∗)

∗ whenever ϕ is in(M∗)
∗.

For ϕ in(M∗)
∗, φ0T is positive linear functional on M . Let {ai} be a monotone

increasing net in M∗ increasing to a in M∗. Then the net {〈αg (ai) , ϕ〉} of continuous
functions on G increases point wise to the continuous function {〈αg (a) , ϕ〉} on G.
By Dini’s theorem, the convergence is uniform, since G is compact. So {〈T (ai) , ϕ〉}
converges to 〈T (a) , ϕ〉. Thus φ0T is normal and belongs to(M∗)

∗. Hence T is σ-
weakly continuous and is the required mapping. ¤

Definition 2.3. A mapping T : M → MG having the properties in the statement of
the above theorem is called a G–centre valued trace or a G–trace.

Definition 2.4. A von Neumann algebra M is said to be G–finite if there is G-trace
defined on it.

Now we extend the idea to projections also. Let M be a von Neumann algebra
and G a group of automorphisms of M . Let e be a projection in MG. For each g in G
define αg

e on Me, the reduced algebra of M for the projection e as αe
g(eae) = eαg(a)e

for a in M . αe
g is an automorphism on Me for each g ∈ G and αe : G → Aut(Me),

the group of all automorphisms on Me, turns to be an action.
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Definition 2.5. The action αe is called the reduced action of α corresponding to the
projection e in MG

Definition 2.6. Let M be a von Neumann algebra and G group of automorphisms of
M. A projection e in MG is said to be G-finite if the corresponding reduced algebra
is Me is Ge-finite. (Ge denotes the group G of automorphisms is defined on Me by
the reduced action αe).

With this definition, in natural way, a von Neumann algebra is G-finite if and only
if the identity of M is a G-finite projection.

Definition 2.7. The projections e and f in M are equivalent relative to G (or G-
equivalent), denoted by e ∼G f, iff ∃t ∈ G such that e = t(f). If P denotes the set
of all projections in M , then the relation ∼G is an equivalence relation in P . The
central carrier or G-central support of a projection a ∈ M is the smallest projection
in MG majorizing e and is denoted by CG

e .

Definition 2.8. Let M be a von Neumann algebra, a G-dimension function d on M
is a mapping from P → MG such that

1. d(e) > 0 if e 6= 0 in P ;
2. d(e + f) = d(e) + d(f) for e and f in P ;
3. d(e) = d(f) if e ∼G f , e and f in P

4. d(q) = q if q is a projection in MG.

Theorem 2.9. Let s be a bounded linear map from M into a Banach space X. Then
the following are equivalent.

(A) s is invariant under G.
(B) The action of s onto G-equivalent projection in M are equivalent.

Proof. if e ∼G f, then e = t(f) for some t ∈ G. Hence s(e) = s[t(f)]. Thus
(A) ⇒ (B) . For the converse, we have t(e) = t(e), t ∈ G. Hence e ∼G t(e). Then

s(e) = s[t(e)] for all t ∈ G, e ∈ P . M is the norm closed linear hull of its projection
implies that s(a) = s[t(a)] for any a ∈ M. ¤

Theorem 2.10. If a von Neumann algebra M is G-finite, then a G-dimension func-
tion d exists

Proof. We have the following result [8]. M is G-finite iff ∃ a mapping T : M → MG

having the following properties

a) T is linear
b) T is invariant under G;
c) T fixes elements of MG;
d) T is σ-weakly continuous and
e) T is strictly positive.

Now take d = T|P . Then d satisfies all the properties. ¤

Definition 2.11. A von Neumann algebra M is said to be Gp - finite if e ∼G f ≤
e ⇒ e = f for projections e and f in P.
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Theorem 2.12. If a G-dimension function T : M → MG exists, then M is Gp-
finite.

Let e be a projection in P such that e ∼G f ≤ e. We have d(f) = d(e) =
d(f + e− f) = d(e− f) + d(f)d(e− f) = 0 ⇒ e = f. Thus M is Gp-finite.

A projection e in M is called a G- minimal projection if e is G-finite and e does
not have any non-zero proper G-finite subprojections.

Remark 2.13. Let e in M be a G-minimal projection. Then e is a minimal projection
of MG (in the ordinary sense).

Theorem 2.14. Let M be a von Neumann algebra and G the group of automorphisms
of M . Let {eα} be an orthogonal family of projections in MG with a sum e in MG.
Then each element in Me has a direct sum decomposition into elements of Mα

.= Meα

for each α.

Proof. Since e in MG is the direct sum of the family {eα}, the range of e the direct
sum of the orthogonal family, { range of {eα} }, of Hilbert spaces. If H is the the
Hilbert space on which M is defined, then e(H) =

∑
α⊕eα(H). ¤

Consider an element eae of Me. Then eae is a bounded linear operator on e(H).
So an element {ξα} of

∑
α⊕eα(H) is mapped into an element {ηα} of

∑
α⊕eα(H).

If we define aα to be the mapping ξα → ηα, then aα : eα(H) → eα(H) and using the
properties of eae, and the projection eα, we get that aα is a bounded linear operator
on eα(H) for each α and aα in Mα. The way in which aα’s are defined directly leads
us to conclude that the direct sum direct sum of the operators aα’s is nothing but
eae.

From the above result it follows that if M is a von Neumann algebra and G the
group of automorphisms of M and {eα} an orthogonal family of projections in MG,
then each element in MG as a direct sum decomposition into elements of MG

α = MG
eα

for each α.

Theorem 2.15. Let M be a von Neumann algebra and G group of automorphisms
of M . Let {eα} an orthogonal family of G- minimal projections in MG with a sum e
in MG. Then e is a G-finite projection.

Proof. For a general element eae in Me, there exists a family {aα} such that aα is
in Mα for each α. Since eα is a G- minimal projection for each α, MG

α consists of
complex multiples of eα and so MG

α is abelian. Since eα is G-finite, ∃ Tα, a G-trace
on M for each α and Tα (aα) is a scalar multiple of eα. Tα is bounded also with ‖Tα‖
= 1 and ‖Tα (aα)‖ = ‖eae‖ for each α. Hence we can meaningfully define the direct
sum of the family of operators {Tα (aα) }. This direct sum is defined on the range of
e and belongs to MG

e . Now define T on Me as T (eae) =
∑

α⊕Tα (aα) . Then it can
be shown that T is a G-trace which means that e is a G-finite projection. ¤

The properties except σ- weak continuity of T to become a G-trace are lifted from
the corresponding the properties of members of the family {Tα} of G-traces. The
previous theorem says that T is from Me to MG

e . Now, to prove that T is a G-trace,
it remains to prove the σ-weak continuity of T. Let {eaie} be a net in Me converging
σ-weakly to eae in Me. We should prove that {T (eaie)} converges σ-weakly to T (eae)
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in MG
e . Since T is positive, it is enough to show that for a sequence {ξn} in e(H)

with
∑∞

n=1 ‖ξn‖2 < ∞,

(2.1)
∞∑

i=1

〈T (eaie) ξn, ξn〉 →
∞∑

i=1

〈T (eae) ξn, ξn〉

By the definition of T and the direct sum expression of e(H) as
∑

α⊕eα(H) we can
write (2.1) as

(2.2)
∞∑

n=1

∑
α

〈Tα (aiα) ξα
n , ξα

n 〉 →
∞∑

n=1

∑
α

〈Tα (aα) ξα
n , ξα

n 〉

For each n, ξn belongs to e(H) has the form {ξα
n} as an element of

∑
α⊕eα(H) with∑

n ‖ξα
n‖2 < ∞. So ξα

n is zero for all but a countable number of values of α for each
n and hence (2.2) can be reduced to the following form

(2.3)
∞∑

n=1

∞∑
m=1

〈Tm(aim)ξm
n , ξm

n 〉 →
∞∑

n=1

∞∑
m=1

〈Tm (am) ξm
n , ξm

n 〉

Now, the σ-weak convergence of eaie =
∑⊕aiα to eae =

∑⊕aα implies that {aiα}
converges σ-weakly to aα and Tα(aiα) → Tα(aα) σ-weakly, for each α. For each α,
since

∑∞
n=1 ‖ξα

n‖2 ≤
∑∞

n=1 ‖ξn‖2 < ∞, we have

∞∑
n=1

〈Tα (aiα) ξα
n , ξα

n 〉 →
∞∑

n=1

〈Tα (aα) ξα
n , ξα

n 〉 .

So the same is true for each m = 1, 2, 3, . . . .

(2.4)
∞∑

n=1

〈Tm(aim)ξm
n , ξm

n 〉 →
∞∑

n=1

〈Tm (am) ξm
n , ξm

n 〉 .

Set dn,m = 〈Tm(aim)ξm
n , ξm

n 〉 for n,m = 1, 2, . . . and
∑∞

m=1 |dn,m| = bn. Then

∞∑
n=1

bn =
∞∑

n=1

∞∑
m=1

|〈Tm(aim)ξm
n , ξm

n 〉| ≤
∞∑

n=1

∞∑
m=1

‖Tm‖ ‖aim‖ ‖ξm
n ‖2 < ∞.

Thus
∑∞

n=1 bn is convergent for each i and by the properties of double series, we can
interchange the order of summation in (2.3). Thus (2.3) can be written as

(2.5)
∞∑

n=1

∞∑
m=1

〈Tm(aim)ξm
n , ξm

n 〉 →
∞∑

n=1

∞∑
m=1

〈Tm (am) ξm
n , ξm

n 〉 .

Now set
fai(m) =

∑∞
n=1 〈Tm(aim)ξm

n , ξm
n 〉

fa(m) =
∑∞

n=1 〈Tm(am)ξm
n , ξm

n 〉 ,
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for m = 1, 2, . . . . Then (2.4) can be written as fai(m) → fa(m), for m = 1, 2, . . . .
Also,

(2.6) fai(m) =
∞∑

n=1

〈Tm(aim)ξm
n , ξm

n 〉 ≤ a constant.

Now consider N, the set of natural numbers and µ, the counting measure on N. Then
for a measurable function f on N, we have

∫

N
fdµ =

∫
⋃∞

n=1(n)

fdµ =
∞∑

n=1

∫

{n}
fdµ.

By the Lebesgue dominated convergence theorem, (2.4) and (2.6) can be combined
together to read

∫

N
fai

dµ →
∫

N
fadµ

∫

N
fai

dµ →
∫

N
fadµ.

That is,
∞∑

m=1

fai(m) →
∞∑

m=1

fa(m). Further,

∞∑
m=1

∞∑
n=1

〈Tm(aim)ξm
n , ξm

n 〉 →
∞∑

m=1

∞∑
n=1

〈Tm(am)ξm
n , ξm

n 〉 ,

which is (2.5) and hence T is σ-weakly continuous.
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