ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. 66,   2   (1997)
pp.   313-320
THE FULL PERIODICITY KERNEL FOR A CLASS OF GRAPH MAPS
LL. ALSED\`A, J. PARA NOS and J. A. RODRIGUEZ
Abstract. 
Let $X$ be a graph and let $\CC$ be a class of $X$-maps (that is, of continuous maps from $X$ into itself). A map $f\in \CC$ is said to have full periodicity if $\Per(f)=\N$ (here, $\Per(f)$ denotes the set of periods of all periodic points of $f$ and $\N$ the set of positive integers). The set $K\subseteq \N$ is a full periodicity kernel of $\CC$ if it satisfies the following two conditions: (i) If $f\in \CC$ and $K\subseteq \Per(f)$ then $f$ has full periodicity and (ii) if $S\subset \N$ is a set such that, for every $f\in \CC$, $S\subseteq \Per(f)$ implies $\Per(f)=\N$, then $K\subseteq S$. In this paper we show the existence and characterize the full periodicity kernel of the class of continuous maps from a graph with zero Euler characteristic to itself having all branching points fixed.
AMS subject classification. 
34C35, 54H20
Keywords. 
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied
Mathematics
Faculty of Mathematics,
Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
© Copyright 2001, ACTA MATHEMATICA
UNIVERSITATIS COMENIANAE