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Abstract
In this paper, we study properties of the form u satisfying

u = −λ
(
x2 − a2

)−1
v + δ0,

where v is a regular symmetric semi-classical form (linear functional). We give a
necessary and suffi cient condition for the regularity of the form u. The coeffi cients
of the three-term recurrence relation, satisfied by the corresponding sequence
of orthogonal polynomials, are given explicitly. A study of the semi-classical
character of the founded families is done. An example related to the Generalized
Gegenbauer form is worked out.

1 Introduction and Preliminaries

The semi-classical forms are a natural generalization of the classical forms (Hermite,
Laguerre, Jacobi, and Bessel). Since the system corresponding to the problem of de-
termining all the semi-classical forms of class s ≥ 1 becomes non-linear, the problem
was only solved when s = 1 and for some particular cases [2, 5, 16]. Thus, several
authors use different processes in order to obtain semi-classical forms of class s ≥ 1.
For instance, let v be a regular form and let us define a new form u by the relation
A(x)u = B(x)v, where A(x) and B(x) are non-zero polynomials. When A(x) = 1, v
is positive-definite and B(x) is a positive polynomial, Christoffel [8] has proved that
u is still a positive-definite form. This result has been generalized in [9]. The cases
B(x) = λ 6= 0 and A(x) = x−c, x2, x3, x4 were treated in [15, 17, 18, 22], where it was
shown that under certain regularity conditions the form u is still regular. Moreover, if
v is semi-classical, then u is also semi-classical; see also [1, 4, 6, 11, 23, 24, 25]. When
A(x) = B(x), u is obtained from v by adding finitely mass points and their derivates
[10, 12, 14] and when A(x) and B(x) have no non-trivial common factor, it was found
a necessary and suffi cient condition for u to be regular in [13]. When A(x) and B(x)
are of degree equal to one, an extensive study of the form u has been carried in [27].

In this paper, we consider the situation when A(x) and B(x) are of degree equal to
three and one respectively in a particular case. Indeed, we study the form u, fulfilling

x
(
x2 − a2

)
u = −λxv, (u)1 = 0, (u)2 = −λ 6= 0,

∗Mathematics Subject Classifications: 42C05, 33C45.
†yInstitut Suprieur de Gestion de Gabs. Avenue Habib Jilani. Gabs 6002, Tunisia

221



222 Orthogonal Polynomials

where v is a regular symmetric form. The first section is devoted to the preliminary
results and notations used in the sequel. In the second section, an explicit necessary
and suffi cient condition for the regularity of the new form is given. We obtain the coef-
ficients of the three-term recurrence relation satisfied by the new family of orthogonal
polynomials. We also analyze some linear relations linking the polynomials orthogonal
with respect to u and v. In the third section, The stability of the semi-classical families
is proved. Finally, we apply our result to Generalized Gegenbauer form.
Let P be the vector space of polynomials with coeffi cients in C and let P ′ be its

dual. We denote by 〈v, f〉 the action of v ∈ P ′ on f ∈ P. In particular, we denote by
(v)n := 〈v, xn〉 , n ≥ 0 , the moments of v. For any form v and any polynomial h let
Dv = v′, hv, δc, and (x− c)−1 v be the forms defined by:

〈v′, f〉 := −〈v, f ′〉 , 〈hv, f〉 := 〈v, hf〉 , 〈δc, f〉 := f(c),
〈

(x− c)−1 v, f
〉

:= 〈v, θcf〉

where (θcf) (x) = f(x)−f(c)
x−c , c ∈ C, and f ∈ P.

Then, it is straightforward to prove that for c , d ∈ C , c 6= d , f, g ∈ P and v ∈ P ′,
we have

(x− c)−1 ((x− c) v) = v − (v)0δc, (1)

(x− c)
(

(x− c)−1 v
)

= v, (2)

(x− d)
−1
δc =

1

c− d (δc − δd). (3)

cf. [21]. Let us define the operator σ : P → P by (σf) (x) = f(x2). Then, we define
the even part σv of v by 〈σv, f〉 := 〈v, σf〉 . Therefore, we have [20]

f(x) (σv) = σ
(
f(x2)v

)
, (4)

σ (v′) = 2 (σ(xv)) . (5)

A form v is called regular if there exists a sequence of polynomials {Sn}n≥0 (degSn ≤ n)
such that

〈v, SnSm〉 = rnδn,m for rn 6= 0 and n ≥ 0. (6)

Then degSn = n for n ≥ 0 and we can always suppose each Sn is monic. In such a
case, the sequence {Sn}n≥0 is unique. It is said to be the sequence of monic orthogonal
polynomials with respect to v.
It is a very well known fact that the sequence {Sn}n≥0 satisfies the recurrence

relation (see, for instance, the monograph by Chihara [7]){
Sn+2(x) =

(
x− ξn+1

)
Sn+1(x)− ρn+1Sn(x) for n ≥ 0,

S1(x) = x− ξ0 and S0(x) = 1,
(7)

with
(
ξn, ρn+1

)
∈ C× C− {0}, n ≥ 0 . By convention we set ρ0 = (v)0 = 1.

In this case, let {S(1)n }n≥0 be the associated sequence of first order for the sequence
{Sn}n≥0 satisfying the recurrence relation{

S
(1)
n+2(x) =

(
x− ξn+2

)
S
(1)
n+1(x)− ρn+2S

(1)
n (x) for n ≥ 0,

S
(1)
1 (x) = x− ξ1, S

(1)
0 (x) = 1, and S(1)−1(x) = 0.

(8)
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Another important representation of S(1)n (x) is, (see [7]),

S(1)n (x) :=

〈
v,
Sn+1(x)− Sn+1(ζ)

x− ζ

〉
. (9)

Also, let {Sn(., µ)}n≥0 be the co-recursive polynomials for the sequence {Sn}n≥0 sat-
isfying

Sn(x, µ) = Sn(x)− µS(1)n−1(x) for n ≥ 0. (10)

cf. [7].
We recall that a form v is called symmetric if (v)2n+1 = 0 for n ≥ 0. The conditions

(v)2n+1 = 0 for n ≥ 0 are equivalent to the fact that the corresponding monic orthog-
onal polynomial sequence {Sn}n≥0 satisfies the recurrence relation (7) with ξn = 0 for
n ≥ 0. cf. [7].

Throughout this paper, the form v will be supposed normalized, (i.e., (v)0 = 1),
symmetric and regular.

Let us consider the decomposition of {Sn}n≥0 and {S(1)n }n≥0:

S2n(x) = Pn(x2), S2n+1(x) = xRn(x2), (11)

S
(1)
2n (x) = Rn(x2,−ρ1) and S

(1)
2n+1(x) = xP (1)n (x2). (12)

cf. [7, 20]. The sequences {Pn}n≥0 and {Rn}n≥0 are respectively orthogonal with
respective to σv and xσv. We also have{

Rn+2(x) =
(
x− ξRn+1

)
Rn+1(x)− ρRn+1Rn(x) for n ≥ 0,

R1(x) = x− ξR0 and R0(x) = 1,
(13)

with

ξR0 = ρ1 + ρ2, ξ
R
n+1 = ρ2n+3 + ρ2n+4, and ρ

R
n+1 = ρ2n+2ρ2n+3 for n ≥ 0. (14)

By virtue of (8), with ξn = 0, we get S(1)n+2(0) = −ρn+2S
(1)
n (0). Consequently,

S
(1)
2n (0) = Rn(0,−ρ1) = (−1)n

n∏
ν=0

ρ2ν for n ≥ 0. (15)

PROPOSITION 1 ([7, 21]). v is regular if and only if σv and xσv are regular.

2 Algebraic Properties

For fixed a ∈ C and λ ∈ C− {0}, we can define a new normalized form u ∈ P ′
by the

relation
u = −λ(x2 − a2)−1v + δ0. (16)
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Equivalently, from (1)-(3) we have

x
(
x2 − a2

)
u = −λxv, (u)1 = 0, and (u)2 = −λ. (17)

The case a = 0 is treated in [1, 18, 26], so henceforth, we assume a 6= 0.

PROPOSITION 2. u is regular if and only if

Rn(a2,−ρ1)∆n 6= 0 for n ≥ 0, (18)

where Rn is defined by (13), and for n ≥ 0,

∆n = Rn+1(a
2,−ρ1)

(
λRn(0,−ρ1) + a2Rn(0)

)
−Rn(a2,−ρ1)

(
λRn+1(0,−ρ1) + a2Rn+1(0)

)
.

(19)

PROOF. Multiplying (17) by x and applying the operator σ for the obtained equa-
tion and using (2), we get

−λ−1xσu = ρ1
(
x− a2

)−1 (
ρ−11 xσv

)
+ δa2 . (20)

From (20) and (3), we get

σu = −λρ1x−1
(
x− a2

)−1 (
ρ−11 xσv

)
+

(
1 +

λ

a2

)
δ0 −

λ

a2
δa2 . (21)

From (16), it is plain that u is a symmetric form. Then, according to Proposition
1, u is regular if and only if xσu and σu are regular. But

−λ−1xσu = ρ1
(
x− a2

)−1 (
ρ−11 xσv

)
+ δa2

is regular if and only if λ 6= 0 and Rn(a2,−ρ1) 6= 0 for n ≥ 0 (see [22]). So u is regular
if and only if Rn(a2,−ρ1) 6= 0 and

σu = −λρ1x−1
(
x− a2

)−1 (
ρ−11 xσv

)
+

(
1 +

λ

a2

)
δ0 −

λ

a2
δa2

is regular. Or, it was shown in [6] that the form

−λρ1x−1
(
x− a2

)−1 (
ρ−11 xσv

)
+

(
1 +

λ

a2

)
δ0 −

λ

a2
δa2

is regular if and only if ∆n 6= 0 for n ≥ 0. Then, we deduce the desired result.

REMARK 1. From (11) and (12), we get

Rn(a2,−ρ1) = S
(1)
2n (a), Rn(0,−ρ1) = S

(1)
2n (0), and Rn(0) = S′2n+1(0)
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for n ≥ 0. Thus, u is regular if and only if

S
(1)
2n (a)

{
S
(1)
2n+2(a)

(
λS

(1)
2n (0) + a2S′2n+1(0)

)
−S(1)2n (a)

(
λS

(1)
2n+2(0) + a2S′2n+3(0)

)}
6= 0 for n ≥ 0.

(22)

REMARK 2. From (7), we have

S′1(0) = 1 and S′2n+3(0) = S2n+2(0)− ρ2n+3S′2n+1(0) for n ≥ 0.

Therefore, we can easily prove by induction that

S′2n+1(0) = (−1)nΛnS
(1)
2n (0) for n ≥ 0, (23)

with

Λn = 1 +

n−1∑
ν=0

ν∏
k=0

ρ2k+1
ρ2k+2

for n ≥ 0 where
−1∑
ν=0

= 0. (24)

When u is regular, let {Zn}n≥0 be the corresponding sequence satisfying the recur-
rence relation {

Zn+2(x) = xZn+1(x)− γn+1Zn(x) for n ≥ 0,

Z1(x) = x and Z0(x) = 1.
(25)

Let us now consider the quadratic decomposition of the sequence {Zn}n≥0

Z2n(x) = P̃n(x2) and Z2n+1(x) = xR̃n(x2) for n ≥ 0. (26)

From (20) and (21), we can deduce the following results.

PROPOSITION 3 ([22]). The polynomials of the sequence {R̃n}n≥0 satisfy the
relation

R̃n+1(x) = Rn+1(x) + anRn(x) for n ≥ 0, (27)

where

an = −
S
(1)
2n+2(a)

S
(1)
2n (a)

for n ≥ 0. (28)

PROPOSITION 4 ([6]). The polynomials of the sequence {P̃n}n≥0 satisfy the
relation {

P̃n+2(x) = Rn+2(x) + cn+1Rn+1(x) + bnRn(x) for n ≥ 0,

P̃1(x) = R1(x) + c0,
(29)
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where

bn = −∆n+1

∆n
for n ≥ 0, (30)

and, for n ≥ 0,
cn+1 = −∆−1n

{
S
(1)
2n (a)

(
λS

(1)
2n+2(0) + a2S′2n+5(0)

)
−S(1)2n+4(a)

(
λS

(1)
2n (0) + a2S′2n+1(0)

)}
,

c0 = −λ− ρ1 − ρ2.

(31)

LEMMA 1.

xZn+3(x) = Sn+4(x) + b̃n+2Sn+2(x) + ãnSn(x) for n ≥ 0,

xZ2(x) = S3(x) + b̃1S1(x),

xZ1(x) = S2(x) + b̃0,

(32)

with for n ≥ 0,
ã2n = ρ2n+1an, ã2n+1 = bn,

b̃2n+2 = ρ2n+3 + an, b̃2n+3 = cn+1,

b̃0 = ρ1 and b̃1 = c0.

(33)

PROOF. From (26),we have

xZ2n+2(x) = xP̃n+1(x
2) and xZ2n+1(x) = x2R̃n(x2) for n ≥ 0.

Then, from the above equation, (11), (27) and (29), we get (32).

PROPOSITION 5. We may write

γ1 = −λ, γn+2 = ρn+1
ãn+1
ãn

, (34)

γn+3 − ρn+3 = b̃n+2 − b̃n+3, (35)

and
ãn+1 − ãn = ρn+2b̃n+2 − γn+3b̃n+1, (36)

for n ≥ 0.

PROOF. After multiplication of (32) by x, we apply the recurrence relations (7)
and (25), we get

xZn+4(x) + γn+3xZn+2(x) = Sn+5(x) + (ρn+4 + b̃n+2)Sn+3(x)

+(ãn + ρn+2b̃n+2)Sn+1(x) + ρnãnSn−1(x)
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for n ≥ 1. Substituting xZk+3 in the above equation by Sk+4 + b̃k+2Sk+2 + ãkSk
with k = n+ 1, n− 1, we obtain (34)-(36), after comparing the coeffi cients of Sk with
k = n+ 3, n+ 1, n− 1.

REMARK 3. From (14), (33) and (34), the sequence {R̃n}n≥0 satisfies the recur-
rence relation (13) with for n ≥ 0,

βR̃0 = −λ− b0
a0
, βR̃n+1 = ρ2n+2ρ2n+3

an+1
bn

+
bn+1
an+1

,

and
γR̃n+1 = ρ2n+2ρ2n+3

an+1
an

.

3 The Semi-Classical Case

In this section, we compute the exact class of the semi-classical form u.

DEFINITION 1 ([21]). The form v is called semi-classical when it is regular and
satisfies the Riccati equation

Φ(z)S′
(
v
)
(z) = C(z)S

(
v
)
(z) +D(z), (37)

where Φ monic, C and D are polynomials and S(v)(z) designes the formal Stieltjes
function of the form v defined by:

S(v)(z) = −
∑
n≥0

(v)n
zn+1

. (38)

It was shown in [21] that equation (37) is equivalent to

(Φ(x)v)
′
+ Ψv = 0, (39)

with
Ψ(x) = −Φ′(x)− C(x). (40)

We also have the following relation :

D(x) = − (vθ0Φ)
′
(x)− (vθ0Ψ) (x).

PROPOSITION 6 ([21]). Define r = deg(Φ) and p = deg(Ψ). The semi-classical
form v satisfying (39) is of class s = max (r − 2, p− 1) if and only if∏

c∈Z

{
|Φ′(c) + Ψ(c)|+

∣∣〈v, θ2cΦ + θcΨ〉
∣∣} 6= 0, (41)

where Z denotes the set of zeros of Φ.
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COROLLARY 1 ([19]). The form v satisfying (37) is of class s if and only if∏
c∈Z

(|C(c)|+ |D(c)|) 6= 0. (42)

PROPOSITION 7. If v is a semi-classical form and satisfies (37), then for every
λ ∈ C−{0} such that Rn(a2,−ρ1)∆n 6= 0, n ≥ 0, the form u defined by (16) is regular
and semi-classical. It satisfies

Φ̃(z)S′(u)(z) = C̃(z)S(u)(z) + D̃(z), (43)

where 
Φ̃(z) = z2

(
z2 − a2

)
Φ(z),

C̃(z) = z2
(
z2 − a2

)
C(z)− 2z3Φ(z),

D̃(z) = z
(
z2 − a2

)
C(z)−

(
z2 + a2

)
Φ(z)− λz2D(z),

(44)

and u is of class s̃ such that s̃ ≤ s+ 4.

PROOF. We have [21]

zS(v)(z) = S(ξv)(z)− (vθ0(ξ)) (z) = S(ξv)(z)− 1.

Using (17), we get

zS(v)(z) = − 1

λ
S (ξ (ξ − a) (ξ − b)u) (z)−1 = − 1

λ
(z − a) (z − b) (zS(u)(z)− 1) . (45)

Multiplying (37) by z2 and taking into account (45) we obtain (43)-(44).

From (39) and (43)-(44), the form u satisfies the distributional equation(
Φ̃(x)v

)′
+ Ψ̃v = 0, (46)

where Φ̃ is the polynomial defined in (44) and

Ψ̃(x) = −Φ̃′(x)− C̃(x) = x
(
x2 − a2

)
(xΨ(x)− 2Φ(x)) . (47)

Then deg(Φ̃) = r̃ ≤ s+ 6 and deg(Ψ̃) = p̃ ≤ s+ 5. Thus s̃ = max (r̃ − 2, p̃− 1) ≤ s+ 4.

PROPOSITION 8. Let u be a semi-classical form satisfying (43). For every zero of
Φ̃ different from 0 and a, the equation (43) is irreducible.

PROOF. Since v is a semi-classical form of class s, S(v)(z) satisfies (37), where the
polynomials Φ, C and D are coprime. Let Φ̃, C̃ and D̃ be as in Proposition 7. Let c
be a zero of Φ̃ different from 0 and a, this implies that Φ(c) = 0.

We know that |C(c)|+|D(c)| 6= 0, (i) if C(c) 6= 0, then C̃(c) 6= 0; and (ii) if C(c) = 0
and D(c) 6= 0, then D̃(c) 6= 0, whence |C̃(c)|+ |D̃(c)| 6= 0.
Concerning the class of u, we have the following result (see Proposition 9). But

first, let us recall this technical lemma.

LEMMA 2. We have the following properties:
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(P1) The equation (43)-(44) is irreducible in 0 if and only if

Φ(0) 6= 0.

(P2) The equation (43)-(44) is divisible by z but not by z2 if and only if

Φ(0) = 0 and C(0) + Φ′(0) 6= 0.

(P3) The equation (43)-(44) is irreducible in a and −a if and only if

|Φ(a)|+ |D(a)| 6= 0.

(P4) The equation (43)-(44) is divisible by z2− a2 but not by (z2− a2)2 if and only if

Φ(a) = D(a) = 0 and |C(a)− aΦ′′(a)|+ |D′′(a)| 6= 0.

PROOF. From (44), we have C̃(0) = 0 and D̃(0) = −a2Φ(0). If Φ(0) 6= 0, then
D̃(0) 6= 0. So, by virtue of (42), we obtain P1. Now, if Φ(0) = 0, then the equation
(43)-(44) is divisible by z according to (42). Thus S(u)(z) satisfies (43) with

Φ̃(z) = z
(
z2 − a2

)
Φ(z),

C̃(z) = z
(
z2 − a2

)
C(z)− 2z2Φ(z),

D̃(z) =
(
z2 − a2

)
C(z)−

(
z2 + a2

)
(θ0Φ) (z)− λzD(z).

(48)

Therefore, C̃(0) = 0 and D̃(0) = −a2 (C(0) + Φ′(0)). If C0(0) + Φ′(0) 6= 0, then
the equation (43)-(48) is irreducible in 0. Thus, we deduce P2. From (44), we get
C̃(a) = −2a3Φ(a) and D̃(a) = −a2 (λD(a) + 2Φ(a)) . Then, we can deduce that
|C̃(a)| + |D̃(a)| 6= 0 if and only if (Φ(a), D(a)) 6= (0, 0). Thus P3 is proved. If
(Φ(a), D(a)) = (0, 0), then the equation (43)-(44) can be divided by z2 − a2 since
u is symmetric and according to (42). In this case S(u)(z) satisfies (43) with

Φ̃(z) = z2Φ(z),

C̃(z) = z2C(z)− 2z3 (θ−aθaΦ) (z),

D̃(z) = zC(z)−
(
z2 + a2

)
(θ−aθaΦ) (z)− λz2 (θ−aθaD) (z).

(49)

Substituting z by a in (49), we obtain

C̃(a) = a2 (C(a)− aΦ′′(a)) , D̃(z) = a
(
C(a)− aΦ′′(a)− λa

2
D′′(a)

)
.

Then (43)-(49) is irreducible in a and −a if and only if |C(a)− aΦ′′(a)|+ |D′′(a)| 6= 0.
Hence P4.

PROPOSITION 9. Under the conditions of Proposition 7, for the class of u, we
have two different cases:
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(A) Φ(0) 6= 0

(i) s̃ = s+ 4 if (Φ(a), D(a)) 6= (0, 0).
(ii) s̃ = s+ 2 if (Φ(a), D(a)) = (0, 0) and |C(a)− aΦ′′(a)|+ |D′′(a)| 6= 0.

(B) Φ(0) = 0 and C(0) + Φ′(0) 6= 0

(i) s̃ = s+ 3 if (Φ(a), D(a)) 6= (0, 0).
(ii) s̃ = s+ 1 if (Φ(a), D(a)) = (0, 0) and |C(a)− aΦ′′(a)|+ |D′′(a)| 6= 0.

PROOF. From Proposition 8, the class of u depends only on the zeros 0 and a. For
the zero 0 we consider the following situation:
(A) Φ(0) 6= 0. In this case the equation (43)-(44) is irreducible in 0 according to

P1. But what about the zero a? We will analyze the following cases:
(i) (Φ(a), D(a)) 6= (0, 0), the equation (43)-(44) is irreducible in a and −a according

to P3. Then s̃ = s+ 4. Thus we proved (A)(i).
(ii) (Φ(a), D(a)) = (0, 0) and |C(a)− aΦ′′(a)|+ |D′′(a)| 6= 0.
From P3 and P4, (43)-(44) is divisible by z2−a2 but not by

(
z2 − a2

)2
and thus the

order of the class of u decreases in two units. In fact, S(u)(z) satisfies the irreducible
equation (43)-(49) and then s̃ = s+ 2. Hence (A)(ii).
(B) Φ(0) = 0 and C(0) + Φ′(0) 6= 0.
In this condition, (43)-(44) is divisible by z but not by z2 according to P2. But

what about the zero a? We have the two following cases:
(i) (Φ(a), D(a)) 6= (0, 0), the equation (43)-(44) is irreducible in a and −a according

to P3. Therefore S(u)(z) satisfies the irreducible equation (43)-(49) and then s̃ = s+ 3
and (B)(i) is also proved.
(ii) (Φ(a), D(a)) = (0, 0) and |C(a)− aΦ′′(a)|+ |D′′(a)| 6= 0.
From P3 and P4, (43)-(48) is divisible by z2 − a2 but not by

(
z2 − a2

)2
. Then,

S(u)(z) satisfies the irreducible equation (43) with
Φ̃(z) = zΦ(z),

C̃(z) = zC(z)− 2z2 (θ−aθaΦ) (z),

D̃(z) = C(z)−
(
z2 + a2

)
(θ0θ−aθaΦ) (z)− λz (θ−aθaD) (z),

(50)

and thus s̃ = s+ 1.

Finally, if we suppose that the form v has the following integral representation:

〈v, f〉 =

∫ +∞

−∞
V (x)f(x)dx for f ∈ P with (v)0 =

∫ +∞

−∞
V (x)dx = 1,

where V is locally integrable function with rapid decay and continuous at a and −a.
Then, from (16) the form u is represented by

〈u, f〉 = f(0) + λ
2a

{
P
∫ +∞
−∞

V (x)
x+a f(x)dx− P

∫ +∞
−∞

V (x)
x−a f(x)dx

+

(
f(a) + f(−a)

)
P
∫ +∞
−∞

V (x)
x−a dx

}
,

(51)
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where for c ∈ {a, −a}

P

∫ +∞

−∞

V (x)

x− cf(x)dx = lim
ε→0

[∫ c−ε

−∞

V (x)

x− cf(x)dx+

∫ +∞

c+ε

V (x)

x− cf(x)dx

]
.

4 Application

Proposition 7 shows that we can generate new semi-classical sequences from well known
ones. We apply our results to v := G.G(α, β), where G.G(α, β) is the Generalized
Gegenbauer form. In this case, the form v is symmetric semi-classical of class s = 1.
Thus, we have [7]  ρ2n+1 = (n+β+1)(n+α+β+1)

(2n+α+β+1)(2n+α+β+2) for n ≥ 0,

ρ2n+2 = (n+1)(n+α+1)
(2n+α+β+2)(2n+α+β+3) for n ≥ 0.

(52)

The regularity conditions are α 6= −n , β 6= −n , α+ β 6= −n , n ≥ 1 . We also have

Φ(x) = x
(
x2 − 1

)
, Ψ(x) = −2 (α+ β + 2)x2 + 2 (β + 1) ,

C(x) = (2α+ 2β + 1)x2 − (2β + 1) , D(x) = 2 (α+ β + 1)x.
(53)

For greater convenience we take a = 1, and α 6= 0. From (8) and (52), we can easily
obtain by induction

S
(1)
2n (0) = (−1)n

Γ (α+ β + 2) Γ (n+ α+ 1)

Γ (α+ 1) Γ (2n+ α+ β + 2)
for n ≥ 0, (54)

and

S
(1)
2n (1) =

α+ β + 1

αΓ (2n+ α+ β + 2)
Ωn for n ≥ 0, (55)

with, for n ≥ 0,

Ωn =
Γ (n+ α+ 1) Γ (n+ α+ β + 2)

Γ (α+ 1)
− Γ (α+ β + 1) Γ (n+ 1) Γ (n+ β + 2)

Γ (β + 1)
.

From (52), we get

ρ2k+1
ρ2k+2

=
(k + β + 1) (k + α+ β + 1) (2k + α+ β + 3)

(k + 1) (k + α+ 1) (2k + α+ β + 1)
.

Then

ν∏
k=0

ρ2k+1
ρ2k+2

= (2ν + α+ β + 3)
Γ (α+ 1) Γ (ν + β + 2) Γ (ν + α+ β + 2)

Γ (β + 1) Γ (α+ β + 2) Γ (ν + 2) Γ (ν + α+ 2)

=
(2ν + α+ β + 3) Γ (α+ 1)

Γ (β + 1) Γ (α+ β + 2) (ν + 1) (ν + α+ 1)
hν ,
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with

hn =
Γ (n+ β + 2) Γ (n+ α+ β + 2)

Γ (n+ 1) Γ (n+ α+ 1)
, n ≥ 0,

fulfilling

hn+1 =
(n+ β + 2) (n+ α+ β + 2)

(n+ 1) (n+ α+ 1)
hn , n ≥ 0.

Therefore

hn+1 − hn =
(β + 1) (2n+ α+ β + 3)

(n+ 1) (n+ α+ 1)
hn , n ≥ 0,

and consequently, from the above results, we obtain that for n ≥ 1,

n−1∑
ν=0

ν∏
k=0

ρ2k+1
ρ2k+2

=
Γ (α+ 1)

Γ (β + 2) Γ (α+ β + 2)

n−1∑
ν=0

(hν+1 − hν)

=
Γ (α+ 1) Γ (n+ β + 2) Γ (n+ α+ β + 2)

Γ (β + 2) Γ (α+ β + 2) Γ (n+ 1) Γ (n+ α+ 1)
− 1.

Finally, (24), (23) and (19) become respectively

Λn =
Γ (α+ 1) Γ (n+ β + 2) Γ (n+ α+ β + 2)

Γ (β + 2) Γ (α+ β + 2) Γ (n+ 1) Γ (n+ α+ 1)
for n ≥ 0, (56)

S′2n+1(0) =
Γ (n+ β + 2) Γ (n+ α+ β + 2)

Γ (β + 2) Γ (n+ 1) Γ (2n+ α+ β + 2)
for n ≥ 0, (57)

and

∆n =
α+ β + 1

αΓ (2n+ α+ β + 2) Γ (2n+ α+ β + 3)
(Θnλ+ Υn) for n ≥ 0, (58)

with for n ≥ 0

Θn = (−1)n
Γ (α+ β + 2) Γ (n+ α+ 1)

Γ (α+ 1)
(Ωn+1 + (n+ α+ 1) Ωn) ,

Υn =
Γ (n+ β + 2) Γ (n+ α+ β + 2)

Γ (β + 2) Γ (n+ 2)
[(n+ 1) Ωn+1

+ (n+ β + 2) (n+ α+ β + 2) Ωn].

Thus, u is regular for every λ 6= 0 such that

Ωn(Θnλ+ Υn) 6= 0 for n ≥ 0.

Using (55) and (58), we obtain for (28) and (30) (for n ≥ 0)

an = − Ωn+1
Ωn (2n+ α+ β + 2) (2n+ α+ β + 3)

,
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bn = − Θn+1λ+ Υn+1

(Θnλ+ Υn) (2n+ α+ β + 2) (2n+ α+ β + 3) (2n+ α+ β + 4) (2n+ α+ β + 5)
.

Therefore, we have for (34)
γ1 = −λ,

γ2n+2 =
Ωn (Θn+1λ+ Υn+1)

Ωn+1 (Θnλ+ Υn) (2n+ α+ β + 4) (2n+ α+ β + 5)
,

γ2n+3 =
Ωn+2 (Θnλ+ Υn) (n+ 1) (n+ α+ 1) (n+ β + 2) (n+ α+ β + 2)

Ωn+1 (Θn+1λ+ Υn+1) (2n+ α+ β + 3) (2n+ α+ β + 4)
.

Since v is semi-classical, then according to Proposition 7, (40) and (48), the form
u is also semi-classical of class s̃ = 4 and fulfils (43) and (47) with

Φ̃(x) = x2
(
x2 − 1

)2
,

Ψ̃(x) = −x
(
x2 − 1

) (
(2α+ 2β + 5)x2 − 2β − 3

)
,

C̃(x) = x
(
x2 − 1

) (
(2α+ 2β − 1)x2 − 2β − 1

)
,

D̃(x) = 2 (β + 1)x4 − 2 ((α+ β + 1) (λ+ 1) + β)x2 + 2 (β + 1) .

The form v has the following integral representation [7], for Rα > −1, Rβ > −1,
f ∈ P,

〈v, f〉 =
Γ (α+ β + 2)

Γ (α+ 1) Γ (β + 1)

∫ 1

−1
|x|2β+1

(
1− x2

)α
f(x)dx.

Then, from (51), we obtain

〈u, f〉 = f(0) + λ
Γ (α+ β + 2)

2Γ (α+ 1) Γ (β + 1)

[∫ 1

−1

|x|2β+1
(
1− x2

)α
x+ 1

(f(x)− f(−1)) dx

−
∫ 1

−1

|x|2β+1
(
1− x2

)α
x− 1

(f(x)− f(1)) dx

]
,

for Rα > −1 and Rβ > −1. But, if Rα > 0, we have∫ 1

−1

|x|2β+1
(
1− x2

)α
x+ 1

dx = −
∫ 1

−1

|x|2β+1
(
1− x2

)α
x− 1

dx =
Γ (α) Γ (β + 1)

Γ (α+ β + 1)
.

Consequently, if Rα > 0, Rβ > −1, f ∈ P,

〈u, f〉 = λ
Γ (α+ β + 2)

Γ (α+ 1) Γ (β + 1)

∫ 1

−1
|x|2β+1

(
1− x2

)α−1
f(x)dx

+f(0)− λα+ β + 1

2α
(f(1) + f(−1)) . (59)

REMARKS 4. From (59),we have

u = λ
α+ β + 1

α
G.G (α− 1, β) + δ0 − λ

α+ β + 1

2α
(δ1 + δ−1) .
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For more details see [3]. Using (59), we get

(u)2n+2 = λ
Γ (α+ β + 2) Γ (n+ β + 2)

αΓ (β + 1) Γ (n+ α+ β + 2)
− λα+ β + 1

α
, n ≥ 0.
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useful suggestions and for his careful reading of the manuscript.
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