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Abstract

The main purpose of this paper is to give a generalization of the well-known
Nadler multivalued contraction fixed point to the setting of symmetric spaces.
We apply our main result to obtain a new fixed point theorem for multivalued
mappings in probabilistic spaces.

1 Introduction

Let (X,d) be a metric space. Let (CB(X), H) denote the hyperspaces of nonempty
closed bounded subsets of X, where H is the Hausdorff metric induced by d, i.e.,

H(A, B) = max {supd(b, A); supd(a, B)}
beB acA
for all A,B € CB(X), where d(x,A) = inf{d(z,a)| a € A}. In [3], Nadler proved
the following important fixed point result, which has been used and extended in many
different directions, for contraction multivalued operators: Let (X, d) be a complete
metric space and T : X — C'B(X) a multivalued mapping such that:

H(Tz,Ty) < kd(z,y), k€ [0,1), Vz,y € X

Then, there exists u € X such that u € Tu.

Although the fixed point theory for single valued maps is very rich and well devel-
oped, the multivalued case is not. Note that multivalued mappings play a major role
in many areas as in studying disjunctive logic programs.

On the other hand, it has been observed (see for example [1], [2]) that the distance
function used in certain metric theorems proofs need not satisfy the triangular inequal-
ity nor d(z,z) = 0 for all z. Motivated by this fact, Hicks and Rhoades [1] established
some common fixed point theorems in symmetric spaces and proved that very general
probabilistic structures admit a compatible symmetric or semi-metric. Recall that a
symmetric on a set X is a nonnegative real valued function d on X x X such that:
(1) d(z,y) = 0 if and only if x =y, (2) d(x,y) = d(y, ).
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Let d be a symmetric on a set X and for r > 0 and any « € X, let B(z,r) =
{y € X :d(z,y) <r}. A topology t(d) on X is given by U € t¢(d) if and only if for
each x € U, B(z,r) C U for some r > 0. A symmetric d is a semi-metric if for each
2 € X and each r > 0, B(z,r) is a neighborhood of z in the topology t(d). Note that
lim;,,00d(2n, x) = 0 if and only if z, — x in the topology t(d).

In order to unify the notation (see Theorem 2.2.1, Corollary 2.2.1 and Remark
2.2.1), we need the following two axioms (W.3) and (W.4) given by Wilson [5] in a
symmetric space (X, d):

(W.3) Given {x,},z and y in X, lim, cd(2,,2) = 0 and lim,_,cd(z,,y) = 0
imply z = y.

(W.A4) Given {z,}, {yn} and x in X, lim,,_,ood(z,,x) = 0 and lim,, o d(zy, y») =0
imply that lim,_,ccd(yn,z) = 0.

It is easy to see that for a semi-metric d, if ¢(d) is Hausdorff, then (W.3) holds.

A sequence in X is called a d-Cauchy sequence if it satisfies the usual metric con-
dition. There are several concepts of completeness in this setting (see [1]):

(i) X is S-complete if for every d-Cauchy sequence (z,), there exists x in X with
lim,, ,od(x, z,) = 0.

(ii) X is d-Cauchy complete if for every d-Cauchy sequence {x,,}, there exists z in X
with x,, — z in the topology t(d).

REMARK 1.1. Let (X,d) be a symmetric space and let {z,,} be a d-Cauchy se-
quence. If X is S-complete, then there exists © € X such that lim,_..d(z,z,) = 0.
Therefore S-completeness implies d-Cauchy completeness.

2 Main results

2.1 The Hausdorff distance in a symmetric space
DEFINITION 2.1.1. Let (X, d) be a symmetric space and A a nonempty subset of X.

(1) We say that A is d-closed iff A’ = A where
p - {r e X :d(z,A) =0} and d(z,A) = inf{d(z,y):y € A}.
(2) We say that A is d-bounded iff §4(A) < oo where §4(A) = sup{d(x,y) : x,y € A}.

The following definition is a generalization of the well-known Hausdorff distance to
the setting of symmetric case.
DEFINITION 2.1.2. Let (X,d) be a d-bounded symmetric space and let C'(X) be

the set of all nonempty d-closed subsets of (X,d). Consider the function D : 2% x
2X — R defined by

D(A, B) = max {Supd(a,B); supd(A, b)}
acA beB
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for all A, B € C(X).
REMARK 2.1.1. It is easy to see that (C'(X), D) is a symmetric space.

For our main Theorem we need the following Lemma. It is used in many papers
for metric spaces. The proof is straightforward.

LEMMA 2.1.1. Let (X, d) be a d-bounded symmetric space. Let A, B € C(X) and
a > 1. For each a € A, there exists b € B such that: d(a,b) < aD(A, B).

2.2 Fixed point Theorem
Now we are ready to prove our main Theorem which yields the Nadler’s fixed point

Theorem in a new setting.

THEOREM 2.2.1. Let (X,d) be a d-bounded and S-complete symmetric space
satisfying (W.4) and T : X — C(X) be a multivalued mapping such that:

D(Txz,Ty) < kd(z,y), kel0,1), Yo,y X (1)

Then there exists © € X such that u € Tu.
PROOF. Let z; € X and « € (k,1). Since T'x; is nonempty, there exists xo € Ty

such that d(x1,22) > 0 (if not, then z; is a fixed point of T'). In view of (1), we have:
d(xe,Txe) < D(Tx1,Txa) < kd(x1,22) < ad(1, T2)

using d(zq,Txe) = inf{d(xe,b) : b € Txs}, it follows that there exists x3 € Tza such
that
d(zg, x3) < ad(z1,x2).

Similarly, there exists x4 € Tx3 such that
d(xs3,24) < ad(x2,x3).

Continuing in this fashion, there exists a sequence {x,} in X satisfying x,+1 € Tz,
and
d(Tp, Tnt1) < ad(Tp—1,Ty).

We claim that {z,} is a d-Cauchy sequence. Indeed, we have
d(xn7$n+m) < Ozd(.’L‘n,hZL'ner,l)
< a?(d(@p—2,Tpim—2))-..

<< o Yd(z1, Tmgr))
< anfl(sd(X).

So {z,} is a d-Cauchy sequence. Hence lim,,_,ood(u, x,) = 0 for some u € X. Now we
are able to show that u € Tu. Let € > 1. From Lemma 2.1.1, for each n € {1,2,...}
there exists y,, € T'u such that:

d(Tnt1,Yn) < eD(Txy, Tu) < ekd(xp,u), n=1,2,... .

which implies that lim,, —,cod(2nt1, yn) = 0. In view of (W.4), we have lim,, _, oo d(yn, u) =
0 and therefore u € Tu~ = Tu. The proof is complete.
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If T is a single-valued mapping of a symmetric space (X, d) into itself, we obtain
the following known result [1, Theorem1] for f = Idx which generalizes [2, Proposition
1].

COROLLARY 2.2.1. Let (X,d) be a d-bounded and S-complete symmetric space
satisfying (WW.4) and T be a selfmapping of X such that

d(Tz,Ty) < kd(z,y), ke€l0,1], Vz,y € X.

Then T has a fixed point.

REMARK 2.2.1. It is clear that in corollary 2.2.1, the fixed point is unique. More-
over, it is easy to see that the condition (W.4)[5] implies (W.3)[5] which guarantees
the uniqueness of limits of sequences.

2.3 Application

Throughout this section, a distribution function f is a nondecreasing, left continuous
real-valued function defined on the set of real numbers, with inf f = 0 and sup f = 1.

DEFINITION 2.3.1. Let X be a set and & a function defined on X x X such that
S(z,y) = Fp,y is a distribution function. Consider the following conditions:

I. F, ,(0)=0 for all z,y € X.

II. F,, = H if and only if x = y, where H denotes the distribution function defined
_J 0 difx<0
byH(x)_{1 if >0

Il F,, =F,,.
IV. If F, y(e) =1 and F, ,(6) =1 then F, (e +0) = 1.

If S satisfies T and 11, then it is called a PPM-structure on X and the pair (X,S)
is called a PPM space. An < satisfying III is said to be symmetric. A symmetric
PPM-structure < satisfying IV is a probabilistic metric structure and the pair (X, )
is a probabilistic metric space.

Let (X,S) be a symmetric PPM-space. For ¢, A > 0 and = in X, let N, (e, ) =
{ye X: F,y(e) >1—A}. ATy topology ¢(3) on X is defined as follows:

t(¥) = {U C X| for each x € U, there exists € > 0, such that N,(e,e) C U}.

Recall that a sequence {x,,} is called a fundamental sequence if lim,, .o Fy, 4, (t) =1
for all ¢ > 0. The space (X, S) is called F-complete if for every fundamental sequence
{zn} there exists z in X such that lim, ..o Fy, .(t) = 1, for all ¢ > 0. Note that
condition (W.4), defined earlier, is equivalent to the following condition:

P(4) limy, 0o Fy,, 2(t) = 1 and lim,, oo Fy, 4, (£) = 1 imply lim, . F,, .(t) = 1,
for all ¢ > 0.
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In [1], Hicks and Rhoades proved that each symmetric PPM-space admits a com-
patible symmetric function as follows:

THEOREM 2[1] Let (X, <) be a symmetric PPM-space. Let p: X x X — IR" be
a function defined as follows:

(z,y) = 0 if y € N,(t,t) for all ¢ > 0.
wY sup{t: y ¢ N,(t,t), 0 <t <1} otherwise.

Then
(1) p(z,y) <t if and only if Fj ,(¢) >1—t.
(2) pis a compatible symmetric for ¢(3).

(3) (X,S) is F-complete if and only if (X, p) is S-complete.

For our main result in this section, we need the following new Proposition:

PROPOSITION 2.3.1. Let (X, <) be a symmetric PPM-space and p a compatible
symmetric function for ¢(SJ). For A4, B € C(X), set

E4 p(€) =min { inf supFa p(€), inf sumeb(e)} , €>0.
a€ApeB bEBgcA

and

P(A, B) = max {Sup mfp(a b); sup 1nfp(a b)}
acAbED be BacA

IfT: X — C(X) is a multivalued mapping, then we have
Fpy(t) >1—t implies Epy py(kt) >1—kt, k€ [0,1), Vt >0, Vz,y € X.

implies that P(T'z,Ty) < kp(z,y).

PROOF. Let t > 0 be given and set u = p(x,y) +t. Then p(z,y) = p—t < p gives
Fyy(p) > 1 — p, and therefore Epy 7y (kp) > 1 — kp. Then

infaeresupyery Fap(kp) > 1 —kp
infyerysupeqy Fap(p) > 1 —kp

>1—kup

Va € Tx,3b € Ty, F,u(k
>1—kup

Vb e Ty,da € Tx, Fab(

< kp
< kpp

1)
1)
Va € Tz,3b € Ty, p(a,b)
Vb € Ty,3a € Tx, p(a,b)

then

sup inf p(a,b) < kp and sup inf p(a,b) < ku

acTzbETY bETyaeT"L’
and therefore P(T'x,Ty) < kp = k(p(x,y) +t). Since t > 0 was arbitrary, it follows
P(Tz,Ty) < kp(z,y).
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DEFINITION 2.3.2. Let (X,S) be a symmetric PPM space and A a nonempty
subset of X. We say that A is $-closed iff A = A where

s {r € X :supF,,(t) =1, for all t > 0}.
acA

We denote by Cg(X) the set of all nonempty S-closed subsets of X.

REMARK 2.3.1. Let (X,S) be a symmetric PPM space and Cg(X) be the set
of all nonempty S-closed subsets of X. It is not hard to see that if p is a compatible
symmetric function for ¢(¥) then Cs(X) = C(X) where C(X) is the set of all nonempty
p-closed subsets of (X, p).

Now we are able to state and prove an application of our main Theorem 2.2.1 in
the following way

THEOREM 2.3.1. Let (X,S) be a F-complete symmetric PPM space that satisfies
(P.4) and p a compatible symmetric function for ¢(¥). Let T : X — Cg(X) be a
multivalued mapping such that:

Fpy(t) >1—t implies Epy, py(kt) >1—kt, k€[0,1), Vt >0, Vz,y € X.

Then there exists © € X such that u € Tu.

PROOF. Note that (X,p) is bounded and S-complete. Also p(x,y) < ¢t if and
only if Fj,(t) > 1—t. Let e > 0 be given, and set t = p(x,y) + €. Then p(z,y) <t
gives Fy ,(t) > 1 —t and therefore Erg 7y (kt) > 1 — kt. In view of Proposition 2.3.1,
it follows that P(Txz,Ty) < kt = k(p(z,y) + €). On letting € to 0 (since € > 0 is
arbitrary), we have p(Tz, Ty) < kp(z,y). Now apply Theorem 2.2.1.

For a single-valued selfmapping T, Theorem 2.3.1 is reduced to the following known
result:

COROLLARY 2.3.1. Let (X,S) be a F-complete symmetric PPM space that sat-
isfies (P.4) and p a compatible symmetric function for ¢(J). Let T be a selfmapping of
X satisfying

Fpy(t) >1—t implies Fry ry(kt) >1—kt, k€[0,1), Vt >0, Vz,y € X.

Then T has a fixed point.
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