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CERTAIN CLASS OF UNIFORMLY ANALYTIC FUNCTIONS

DARUS, MASLINA

Abstract. In this paper, we introduce a new class of functions which are
analytic and univalent with negative coefficients defined by using Hadamard
products. Some basic properties which include coefficient bounds, growth
and distortion are given. In addition, results involving the fractional cal-
culus are also given.

1. Introduction and Preliminaries

Denote by A the class of functions of the form

(1.1) f(z) = z +
∞∑

k=2

anzn

which are analytic and univalent in the open disc U = {z : z ∈ C and |z| < 1}.
Denote by S∗(α) the class of starlike functions f ∈ A of order α(0 ≤ α < 1)
satisfying

Re
(

zf ′(z)
f(z)

)
> α, z ∈ U

and let C(α) be the class of convex functions f ∈ A of order α(0 ≤ α < 1) such
that zf ′ ∈ S∗(α).

A function f ∈ A is said to be in the class of β-uniformly convex functions of
order α, denoted by β − UCV (α) [8, 9] if

(1.2) Re
{

1 +
zf ′′(z)
f ′(z)

− α

}
≥ β

∣∣∣∣
zf ′′(z)
f ′(z)

− 1
∣∣∣∣ ,
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and is said to be in a corresponding subclass of β−UCV (α) denote by β−Sp(α)
if

(1.3) Re
{

zf ′(z)
f(z)

− α

}
≥ β

∣∣∣∣
zf ′(z)
f(z)

− 1
∣∣∣∣ ,

where −1 ≤ α ≤ 1 and z ∈ U .
The class of uniformly convex and uniformly starlike functions has been exten-

sively studied by Goodman[1, 2], Ma and Minda[6]. In fact the class of uniformly
β-starlike functions was introduced by Kanas and Wisniowski[4], and for which
it can be generalized to β − Sp(α), the class of uniformly β-starlike functions of
order α.

If f of the form (1.1) and g(z) = z +
∞∑

n=2
bnzn are two functions in A, then

the Hadamard product (or convolution) of f and g is denoted by f ∗ g and is
given by

(1.4) (f ∗ g)(z) = z +
∞∑

n=2

anbnzn.

Ruscheweyh[10] using the convolution techniques, introduced and studied an
important subclass of A, the class of prestarlike functions of order α, which
denoted by R(α). Thus f ∈ A is said to be prestarlike function of order α(0 ≤
α < 1) if f ∗ Sα ∈ S∗(α) where Sα(z) = z

(1−z)2(1−α) = z +
∑∞

n=2 cn(α)zn and

cn(α) = Πn
j=2(j−2α)

(n−1)! (n ∈ N {1} N := {1, 2, 3, . . .}). We note that R(0) =
C(0) and R( 1

2 ) = S∗( 1
2 ). Juneja et.al[3] define the family D(Φ,Ψ; α) consisting

of functions f ∈ A so that

Re
(

f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

)
> α, z ∈ U

where Φ(z) = z +
∑∞

n=2 Υnzn and Ψ(z) = z +
∑∞

n=2 γnzn analytic in U such

that f(z) ∗Ψ(z) 6= 0, Υn ≥ 0, γn ≥ 0 and Υn > γn (n ≥ 2).
Now we define the following new class of analytic functions, and obtain some

new properties.

Definition 1.1. Given η is positive real number and β ≥ 0, and functions

Φ(z) = z +
∞∑

n=2

Υnzn, Ψ(z) = z +
∞∑

n=2

γnzn

analytic in U such that Υn ≥ 0, γn ≥ 0 and Υn > γn (n ≥ 2), we say that f ∈ A
is in D(Φ,Ψ; η, β) if f(z) ∗Ψ(z) 6= 0 and

(1.5) Re

(
1 +

1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

))
> β

∣∣∣∣∣
1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

)∣∣∣∣∣
for all z ∈ U .
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For suitable choices of Φ, Ψ, and having η = 1 − α, we easily obtain the
various subclasses of A. For example

D(
z

(1− z)2
,

z

1− z
; 1− α, 0) = S∗(α),

D(
z + z2

(1− z)3
,

z

(1− z)2
; 1− α, 0) = C(α),

D(
z + (1− 2α)z2

(1− z)3−2α
,

z

(1− z)2−2α
; 1− α, 0) = R(α),

D(
z

(1− z)2
,

z

1− z
; 1− α, β) = β − Sp(α),

and

D(
z + z2

(1− z)3
,

z

(1− z)2
; 1− α, β) = β − UCV (α).

Also denote by T [11] the subclass of A consisting of functions of the form

(1.6) f(z) = z −
∞∑

n=2

anzn.

Let T ∗(α) and CT (α) denote the subfamilies of T that are starlike of order α
and convex of order α. Silverman [11] studied T ∗(α) and CT (α) and Silverman
and Silvia [12] studied RT (α) = T ∩Rα and obtained many interesting results.
Now let us write

DT (Φ, Ψ;α) = D(Φ, Ψ;α) ∩ T.(1.7)
DT (Φ, Ψ; η, β) = D(Φ, Ψ; η, β) ∩ T.(1.8)

Note also that the class DT (Φ,Ψ; α) has been extensively studied by Juneja
et. al. [3].

In this paper we shall investigate various properties for the classDT (Φ,Ψ; η, β).
It would be assumed throughout that Φ(z) and Ψ(z) satisfy the conditions stated
in Definition 1.1 and that f(z) ∗Ψ(z) 6= 0 for z ∈ U .

2. Characterization property

In this section we give a necessary and sufficient condition for a function to
be in DT (Φ,Ψ; η, β).

Theorem 2.1. (Coefficient Bounds.) Let a function f given by (1.1) be in A.
If η is positive real number and β ≥ 0,

(2.1)
∞∑

n=2

[(1 + β)Υn − (1 + β − η)γn]
η

|an| ≤ 1

then f ∈ D(Φ,Ψ; η, β).
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Proof. Let the condition (2.1) holds. It is sufficient to show that

β

∣∣∣∣∣
1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

)∣∣∣∣∣ ≤ Re

{
1 +

1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

)}
,

and we have

β

∣∣∣∣∣
1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

)∣∣∣∣∣ ≤ Re

{{
1 +

1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

)}
− 1

}
+ 1.

That is

β

∣∣∣∣∣
1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

)∣∣∣∣∣− Re

{
1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

)}

≤ (β + 1)

∣∣∣∣∣
1
η

(
f(z) ∗ Φ(z)
f(z) ∗Ψ(z)

− 1

)∣∣∣∣∣

≤

∞∑
n=2

(1 + β)(Υn − γn)|an|

η −
∞∑

n=2
ηγn|an|

.

The above expression is bounded by 1 and hence the assertion of the result.
Thus f ∈ D(Φ,Ψ; η, β). ¤

Theorem 2.2. Let a function f be given by (1.6), then f ∈ DT (Φ,Ψ; η, β) if
and only if (2.1) is satisfied.

Proof. Let f ∈ DT (Φ, Ψ; η, β), then for z is real (1.5) gives

1 +
1
η

(1−
∞∑

n=2
Υnanzn−1

1−
∞∑

n=2
γnanzn−1

− 1

)
≥ β

∞∑
n=2

(Υn − γn)anzn−1

η −
∞∑

n=2
ηγnanzn−1

.

Letting z → 1− along the real axis leads to the desired inequality
∞∑

n=2

[(1 + β)Υn − (1 + β − η)γn]an ≤ η.

which is (2.1). That (2.1) implies f ∈ DT (Φ, Ψ; η, β) is an immediate conse-
quence of Theorem 2.1. Hence the theorem.

Finally, the function f given by

(2.2) f(z) = z − η

(1 + β)Υn − (1 + β − η)γn
zn, (n ≥ 2)

is the extremal function for the assertion of Theorem 2.1 and Theorem 2.2.
¤
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Corollary 2.3. Let the function f defined by (1.6) be in the class DT (Φ, Ψ; η, β).
Then

(2.3) an ≤ η

[(1 + β)Υn − (1 + β − η)γn]
, n ≥ 2.

The equality in (2.3) is attained for the function f given by (2.2).

For β = 0 and η = 1− α, we have result obtained by Juneja[3].

Corollary 2.4 ([3]). A function f defined by (1.6) is in the class

DT (Φ, Ψ; 1− α, 0)

if and only if,

(2.4)
∞∑

n=2

[Υn − αγn]
1− α

|an| ≤ 1.

Next we consider the growth and distortion theorem for the class DT (Φ, Ψ; η, β).
We shall omit the proof as the techniques are tedious and standard.

Theorem 2.5. Let the function f defined by (1.6) be in the class DT (Φ, Ψ; η, β).
Then

|z| − |z|2 η

[(1 + β)Υ2 − (1 + β − η)γ2]
≤ |f(z)|
≤ |z|+ |z|2 η

[(1 + β)Υ2 − (1 + β − η)γ2]

(2.5)

and

1− |z| 2η

[(1 + β)Υ2 − (1 + β − η)γ2]
≤ |f(z)′|

≤ 1 + |z| 2η

[(1 + β)Υ2 − (1 + β − η)γ2]

(2.6)

The bounds (2.5) and (2.6) are attained for functions given by

(2.7) f(z) = z − z2 η

[(1 + β)Υ2 − (1 + β − η)γ2]
.

Theorem 2.6. Let a function f be defined by (1.6) and

(2.8) g(z) = z −
∞∑

n=2

bnzn

be in the class DT (Φ,Ψ; η, β). Then the function h defined by

(2.9) h(z) = (1− λ)f(z) + λg(z) = z −
∞∑

n=2

qnzn
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where qn = (1− λ)an + λbn, 0 ≤ λ ≤ 1 is also in the class DT (Φ,Ψ; η, β).

Proof. The result follows easily from (2.1)and (2.9). ¤

3. Integral transform of the class DT (Φ, Ψ; η, β)

For f ∈ A we define the integral transform

Vλ(f)(z) =
∫ 1

0

λ(t)
f(tz)

t
dt,

where λ is real valued, non-negative weight function normalized so that
∫ 1

0

λ(t)dt = 1.

Since special cases of λ(t) are particularly interesting such as

λ(t) = (1 + c)tc, c > −1,

for which Vλ is known as the Bernardi operator, and

λ(t) =
(c + 1)δ

λ(δ)
tc

(
log

1
t

)δ−1

, c > −1, δ ≥ 0

which gives the Komatu operator. For more details see [5].
First we show that the class DT (Φ, Ψ; η, β)) is closed under Vλ(f).

Theorem 3.1. Let f ∈ DT (Φ,Ψ; η, β). Then Vλ(f) ∈ DT (Φ, Ψ; η, β).

Proof. By definition, we have

Vλ(f) =
(c + 1)δ

λ(δ)

∫ 1

0

(−1)δ−1tc(logt)δ−1

(
z −

∞∑
n=2

anzntn−1

)
dt

=
(−1)δ−1(c + 1)δ

λ(δ)
lim

r→0+

[∫ 1

r

tc(logt)δ−1

(
z −

∞∑
n=2

anzntn−1

)
dt

]
,

and a simple calculation gives

Vλ(f)(z) = z −
∞∑

n=2

(
c + 1
c + n

)δ

anzn.

We need to prove that

(3.1)
∞∑

n=2

[(1 + β)Υn − (1 + β − η)γn]
η

(
c + 1
c + n

)δ

an < 1.

On the other hand by Theorem 2.2, f ∈ DT (Φ,Ψ; α, β) if and only if
∞∑

n=2

[(1 + β)Υn − (1 + β − η)γn]
η

< 1.

Hence c+1
c+n < 1. Therefore (3.1) holds and the proof is complete. ¤
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Next we provide a starlike condition for functions in DT (Φ, Ψ; η, β) and Vλ(f).

Theorem 3.2. Let f ∈ DT (Φ, Ψ; η, β). Then Vλ(f) is starlike of order 0 ≤ τ <
1 in |z| < R1 where

R1 = inf
n

[(
c + n

c + 1

)δ (1− τ)[(1 + β)Υn − (1 + β − η)γn]
(n− τ)η

] 1
n−1

Proof. It is sufficient to prove

(3.2)
∣∣∣∣
z(Vλ(f)(z))′

Vλ(f)(z)
− 1

∣∣∣∣ < 1− τ.

For the left hand side of (4.2) we have

∣∣∣∣
z(Vλ(f)(z))′

Vλ(f)(z)
− 1

∣∣∣∣ =

∣∣∣∣∣∣∣∣

∞∑
n=2

(1− n)( c+1
c+n )δanzn−1

1−
∞∑

n=2
( c+1

c+n )δanzn−1

∣∣∣∣∣∣∣∣

≤

∞∑
n=2

(n− 1)( c+1
c+n )δan|z|n−1

1−
∞∑

n=2
( c+1

c+n )δan|z|n−1

.

This last expression is less than (1− τ) since

|z|n−1 <

(
c + 1
c + n

)−δ (1− τ)[(1 + β)Υn − (1 + β − η)γn]
(n− τ)η

.

Therefore the proof is complete. ¤
Using the fact that f is convex if and only if zf ′ is starlike, we obtain the

following:

Theorem 3.3. Let f ∈ DT (Φ, Ψ; η, β). Then Vλ(f) is convex of order 0 ≤ τ < 1
in |z| < R2 where

R2 = inf
n

[(
c + n

c + 1

)δ (1− τ)[(1 + β)Υn − (1 + β − η)γn]
n(n− τ)η

] 1
n−1

.

We omit the proof as it is easily derived.
Finally,

Theorem 3.4. Let f ∈ DT (Φ,Ψ; η, β). Then Vλ(f) is close-to-convex of order
0 ≤ τ < 1 in |z| < R3 where

R3 = inf
n

[(
c + n

c + 1

)δ (1− τ)[(1 + β)Υn − (1 + β − η)γn]
nη

] 1
n−1

.

Again we omit the proofs.
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4. An Application of Fractional Calculus

Many interesting results have been studied by various authors involving the
fractional calculus. Too many to be mentioned here. However, our definitions
for fractional calculus are due to Owa[7]. For other definitions, see [13], [14],
[15] and [16]. For δ > 0, the fractional integral of order δ is defined by

D−δ
z

1
Γ(δ)

∫ z

0

f(ζ)dζ

(z − ζ)1−δ

and f is analytic functions in a simply-connected region of the z-plane containing
the origin, and the multiplicity of (z − ζ)δ−1 is removed by requiring log(z − ζ)
to be real when z− ζ > 0. In addition for 0 ≤ δ < 1, the fractional derivative of
order δ is defined by

Dδ
z

1
Γ(1− δ)

∫ z

0

f(ζ)dζ

(z − ζ)δ

and f is analytic functions in a simply-connected region of the z-plane containing
the origin, and the multiplicity of (z − ζ)δ is removed by requiring log(z − ζ) to
be real when z − ζ > 0. Under this condition, the fractional derivative of order
n + δ is defined by

Dn+δ
z f(z) =

dn

dzn
Dδzf(z),

where 0 ≤ δ < 1 and n = 0, 1, . . . . Here we give simple results regarding the
application of fractional calculus for functions in DT (Φ,Ψ; η, β), and the details
of proving are omitted as the results are easily derived.

Theorem 4.1. Let the function f defined by (1.6) be in the class DT (Φ, Ψ; η, β).
Then

|z|1+δ

Γ(2 + δ)
− |z|2+δ η

(2 + δ)[(1 + β)Υ2 − (1 + β − η)γ2]

≤ |D−δ
z f(z)| ≤ |z|1+δ

Γ(2 + δ)
+ |z|2+δ η

(2 + δ)[(1 + β)Υ2 − (1 + β − η)γ2]

(4.1)

and

|z|1−δ

Γ(2− δ)
− |z|2−δ 2η

(2− δ)[(1 + β)Υ2 − (1 + β − η)γ2

≤ |Dδ
zf(z)| ≤ |z|1−δ

Γ(2− δ)
+ |z|2−δ 2η

(2− δ)[(1 + β)Υ2 − (1 + β − η)γ2]

(4.2)

The bounds (4.1) and (4.2) are attained for functions given by (2.2).

Remark. Taking δ = 0 and δ = 1 respectively in (4.1) and (4.2), we have
Theorem 2.5 which represent the bounds (2.5) and (2.6) respectively.
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