Acta Mathematica Academiae Paedagogicae Nyíregyháziensis, Vol. 24, No. 3, pp. 287-296 (2008)

Special representations of some simple groups with minimal degrees

Maryam Ghorbany

Iran University of Science and Technology

Abstract: If F is a subfield of C, then a square matrix over F with non-negative integral trace is called a quasi-permutation matrix over F. For a finite group G, let q(G) and c(G) denote the minimal degree of a faithful representation of G by quasi-permutation matrices over the rational and the complex numbers, respectively. Finally r(G) denotes the minimal degree of a faithful rational valued complex character of $G$. In this paper q(G), c(G) and r(G) are calculated for Suzuki group and untwisted group of type B_{2} with parameter 2^{2n+1}.

Keywords: Character table, Lie groups, Quasi-permutation representation ,Rational valued character, Suzuki group.

Classification (MSC2000): 20C15

Full text of the article:

[Previous Article] [Next Article] [Contents of this Number]
© 2008 ELibM and FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition