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ON SOME PROPERTIES OF THE PICARD OPERATORS

LucyNA REMPULSKA AND KAROLINA TOMCZAK

ABSTRACT. We consider the Picard operators P, and Pp;, in exponential
weighted spaces. We give some elementary and approximation properties of
these operators.

1. INTRODUCTION

1.1. The Picard operators

(1) Pu(f;z) = g/Rf(wft)efnlt\ dt — g/Rf(ﬂert)e*"‘tldt,

xe€RandneN, (N={1,2,...}, R=(—o00,400)) are investigated for functions
f: R — R from various classes in many monographs and papers (e.g. [2]-[g]
[10, [11)).

G. H. Kirov in the paper [9] introduced the generalized Bernstein polynomials
By.r for r-times differentiable functions f € CT([O, 1]) and he showed that B,
have better approximation properties than classical Bernstein polynomials B,,.

The Kirov method was used in [I2] to the generalized Picard operators

(2) P (fix) = Pp(Fr(t,x); ), reR, neN, reNy,

rrG) )
3) DI
=0

(Ng = NU {0}) of r-times differentiable functions f: R — R. Obviously P,.o(f) =
Pu(f)-

In this paper we examine the Picard operators P, (in Section [2)) and Py, (in
Section |3)) for functions f belonging to the exponential weighted spaces LL(R) and
LP"(R) which definition is given below. We present some elementary properties, the
orders of approximation and the Voronovskaya — type theorems for these operators.
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1.2. Let ¢ >0and 1< p < oo be fixed,
(4) vy(z) = e~ for zeR,

and let L) = LL(R) be the space of all functions f: R — R for which v,f is
Lebesgue integrable with p-th power over R if 1 < p < oo and uniformly continuous
and bounded on R if p = co. The norm in L} is defined by

1/p

(f\vq(x)f(wﬂpdx) if 1<p<oo,

R
sup vg ()] f ()| if p=oo.
z€R
Moreover, let r € Ng and L2" = LL"(R) be the class of all r-times differentiable
functions f € Ll having the derivatives f®) e L, 1 <k <r. The norm in LE" is
given by . (L{I”O = Lg). The spaces LI and LL" are called exponential weighted
spaces ([1]).

As usual, for f € LI and k € N we define the k-th modulus of smoothness:

(5) 1fllp.g = 1 CO)llp.g =

(6) wi(f; Lijit) = sup IARFpg for t>0,
. i '
@ Akt = 3 (5) sk ).
=0
The above wy, has the following properties:
(8) wr(fi LEsty) < wi(fs Lh;ta) for 0 <ty <t
(9) wi(fi LB At) < (14 A)*e* M wy(f; LPit) for At >0,
; LTP.A —
(10) |l w2 L0 = 0.

for every f € LP and k € N (see [6, Chapter 6] and [13, Chapter 3]).
By wy we define the Lipschitz class

(11) Liph (LPia) == {f € L twy, (f; LE;t) < Mt™ for t >0}
for fixed numbers: 1 <p<o00,¢>0,keN, M >0and 0 < a < k.

2. SOME PROPERTIES OF P,
2.1. By elementary calculations can be obtained the following two lemmas.

Lemma 1. The equality

oo '
r —st _ .
(12) /0 e *dt =~

there holds for every r € Ny and s > 0.

Lemma 2. Let eg(x) =1, e1(z) = = and let p,(t) =t —x for x,t € R. Then
(13) Pnlei;x) =ei(x) for z€R, neN, i=0,1,
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and
(14) Pa (e5(t);2) = %
(15) P (I%(t)lkexp (qle=(t)]) ;x) = (n_k!qT;kH’

forx e R, n>q+1 and k € Np.

Using the above results and arguing analogously to the proof of Lemma [2] in
[10] we can obtain the following basic lemma.

Lemma 3. Let f € LY with fized 1 <p < oo and q > 0. Then

(16) [Pr()lpq < A+ IS

The formula and show that Py, n > q+ 1, is a positive linear operator
acting from the space LY to L.

2.2. By @, , and can be derived the following geometric properties
of P, given by ().

lpg for n>q+1.

Theorem 1. Let f € LY with fivred 1 <p < oo and ¢ >0 and let g+1 <n € N.
Then

(i) if f is non-decreasing (non-increasing) on R, then P, (f) is also non-decreasing
(non-increasing) on R,

(ii) 4f f is convex (concave) on R, then P, (f) is also convexr (concave) on R,
(iii) for every k € N there holds the inequality
we (Pu(f); LPst) < (1 + i (f: LE3t) , t>0,
(iv) if f € Lip’fw (Lg;a) with fited k € N, 0 < o < k and M > 0, then also
P.(f) € Liph,. (LP; ) with the same k and o and M* = (1 + q)M,
(v) If f € LT with a fived r € N, then P, (f) € Lg>" and for derivatives of
Pn(f) there holds
k k k
1P (Do g = 1P (F) oy < O+ P,

Proof. For example we prove (iii). From the formulas and there results
that

AFPu(f;2) = Po (Affiz) for z,h€RkeN.
Next, by (B]) and (16, we have
1A3Pa(f ), = [P0 (ARF)

for h € R and n > ¢ + 1, and using (6)), we get the statement (iii). O

e < A+ 25O,
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2.3.  Arguing similarly to [5] and [I0] and applying @7@, and we can
prove the following approximation theorem.

Theorem 2. Suppose that f € LY with fived 1 < p < oo and ¢ > 0. Then

1Pa(F) = Fllg < 500+ 30 (£, 2 )
for everyn > 3q + 1.
From Theorem [2| and , and there results the following
Corollary 1. If fe LF, 1 <p <00, ¢ >0, then
a7) A [[Pu(f) ~ fll, =0
In particular, if f € Lip?\/[ (Lg; a) with fited 0 < o < 2 and M > 0, then
[Pn(f) = fllp,q = O@™) as n—oo.
Applying Corollary [1} we shall prove the Voronovskaya-type theorem for P,,.
Theorem 3. Let f € L§°’2 with a fived ¢ > 0. Then
(18) lim 2Py (fi2) — f(@)] = /()
for every x € R.
Proof. Choose f € Lg°’2 and x € R. Then, by the Taylor formula, we have

f&) = f@) + f/(a)(t - 2) + %f”(x)(t —a)? +y(ta)(t —x)? for teR,

where 9 (t) = 1(t, z) is a function belonging to LS and lim;_, ¥ (t;2) = ¢ (x) = 0.
Using operator P, n > 2q¢ + 1, and and , we get

(19) Pu(f(t);x) = fz) + n_Qf"(JJ) + Py (V(1)p3 (1); )
and by the Holder inequality and :
|P" (Z/J 03 ( )| < ( (1/)2(t);x) P, (‘Pi(ﬂ?ﬁ))
2 (4P, (¥*(1);2))"? .
From properties of ¢ and (I7) there results that lim P, (¢*(t);2) = ¥?(z) =0

1/2

Consequently, e
(20) lim n?P, (w(t)goi(t);x) =0
and by and follows . O

Now we estimate the rate of convergence given by .

Theorem 4. Let f € Lg°’2 with a fixred ¢ > 0. Then

(21) 92 Pl = 71— 7"y < 40+ @)% (752555 )
form>q+1.
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Proof. For f € L§°’2 and z,t € R there holds the Taylor-type formula

£(8) = $(2) + F/ @) =) + 3 /@) = 2 + (0= 2)*T(12)
where
(22) I(t,2) ::/0 (1= w) [f"(z +u(t — 2)) — ()] du.

Using operator P, n > g + 1, and (13)-(15), we get
Pu(f(t);2) = (@) +n72 " (2) + Pu (2 (O)I(t, 2);2)
which implies that
(23) [0 [Pa(fi2) = f(2)] = f"(2)] <0?P (G2 (O|L(t,2)]52)
for x € R and n > g + 1. Now, applying @, and @, we get from :

1
(¢, )| S/O (1= wwr (f"; L ult — x]) e/ du

1
w1 (f”; L |t — x\) edl®l

1 1
< gor (#5255 7 ) (U nle =) e,

and next by and we can write

TLQUQ({E)'Pn (goi(t)|](t,x)|; x) < % (f// L )
X{Pn((t—xfeq‘t_w‘;x) npn(|t_x|3eq\t—m|;x)}

3 4
- (fﬂ; Ly %) ((n T—l q)3 * (ngizq)‘l)

<4(1+Q)w1(f” oof) for zeR, n>qg+1.
n

IN

/\

Now the estimate is obvious by , the last inequality and . O
Theorem 5. Suppose that f € Lg>" with fized ¢ >0 and r € N. Then
5 T
(24) IPO) = F Ol < 50+ 30 % (£ L5 )
forn >3q+ 1.
Proof. If f € Lg>", then for the r-th derivative of P, (f) we have by Theorem

and (7):
POfi) = £ =5 [ [70@+ )= @) e

- g/oo (A @ = )] e ar.
0
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From this and by @, @D and we deduce that

r r n o r 00 —(n—
PO =1 la < 5 [ (£Os575) e

M. e, YT [T 2 —(n—3q)t
ng<f( ) Lo ;;>§/0 (1+nt)2e”(n=30 g
1 n n? n?
— (r). poo. =
(L7 e * et o)
for n > 3¢ + 1, which yields the estimate (24)). ([

3. SOME PROPERTIES OF P,

3.1. The formulas (| show that the operators P,.,, r € Ny, generalize P,
and Pn.o(f) = Pn(f) or f € L2, By this fact and Section |1} we shall consider
Pp;r for r € N only.

Lemma 4. Let 1 < p < oo, g >0 and k € N be fired numbers. Then for every
J €LY andn > q+1 there holds

(25) [Pnir (f)

|Paq :

lpa < (1+49) Z ||f(j)

Jj=0

The formulas f and the inequality show that Py, n > q+ 1, is a linear
operator acting from LB" to Lb.

Proof. Let 1 < p < co. Then, by 7, the Minkowski inequality and , we
get for f € L™ and n > g+ 1:

P4 = Z *HP (fm ) ( ) ) ||p,q
— P \l/p
<S = ‘e—q\xlﬁ/yf(]) 2+ el dt‘ da
" n , , P o\1/p
< — [ [t]Te M /‘e‘qlx‘f(]) x+t ‘ dx) dt
> g [ (. (@ +1)] o)
< ZQJ'Hf(J) M/ |t e~ (=Dl gy

—lef(”llp,q )m <(1+4q) lef lp.a -

The proof of for p = oo is similar. O

1P (f
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3.2. First we shall prove an analogy of Theorem 2]
Theorem 6. Suppose that f € L™ with fivzed 1 <p < oo, ¢ >0 and r € N. Then

-r T 1
(26) [Pasr(7) = Fllng < M~ (£ L )
for every n > q + 1, where My = (r + 2)(1 + 2¢)" 2.
Proof. For every f € LP'" and x,t € R there holds the following Taylor-type
formula:

r (
(27) fo =%
3=0

J) )
j!<t) (x —t) +

(x—1)"
1) I.(t,x),

where
1
(28) I(t,2) ;:/ (1= wy ™[Ot + ule — 1) = £O0)] du.
0
From , and there results that

Fi(t.a) = f(0) - ol t0),
and next by , and it follows that
_1)r+1
Purlfi) = f2) = P (0= a) Tyt i)
_ (_1)T+1n < r ! o T—1Al (r) > —nlt|
(29) BT /]R t /0 (1—w) AL f "z +t)du ) e Mdt

forz € Rand n > 2q+ 1.
If 1 < p < o0, then using the Minkowski inequality and f@ and , we get
from :

[Prir(f) = fllp.a

= ﬁ(/ |e4l=] / trentl(/l(l — W) IAL L PO (¢ 4 ) du) dt|pdg:)1
- 4) R R 0

< gy e[y AL SO )

< 2(74711);/ |t|re(nq)t|(/1(1 —u)" "l (f(T);LfI’;u|t|) du) dt
— ! Jg o

n r_ —(n— t ). .
< g7 ey (751 ) ar

/p

1 oo
< 2w (f(r); L?; 7> t"(1 4 nt)e~ (20t gy
7! n’ Jo

o (f(r); Ly; %) ((n — Zq)rﬂ + (7(Ll+22))ji2)

for n > 2q + 1, which implies for 1 <p < 0.
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The proof of for f € Ly™" is analogous. O
From Theorem [ we can derive the following
Corollary 2. If fe LP", 1 <p<o0,q¢>0 andr €N, then
nhjgo n” ”Pn,r(f) - f”pg =0.
Moreover, if f") e Lip}w (L{Z’; a) with some 0 < a <1 and M > 0 then
1Prir () = fllpg = O (n™""%) as n—oc.

Arguing analogously to the proof of Theorem [2] given in paper [12] and applying
Corollary [T} we can obtain the following Voronovskaya-type theorem for operators

Prir-
Theorem 7. Let f € L™ with fized r € N and ¢ > 0. Then

Prlfi) — f(a) = St

N (r+1)[1+(-1)7

FU (@)

Frt2 @) +on™2) as n— oo,

2n7'+2
at every x € R. In particular, if r is even number, then
(30) lim 02 [Py (fr0) = f(2)] = (r + 1)) ()

at every x € R.

Similarly to Theorem [ now we shall estimate the rate of convergence given by
[B0).

Theorem 8. Let g > 0 and even number r € N be fixed. Then for every f € L;O’T“
and n > 2q + 1 there holds

(B1) 0 Pusg () = S = 0+ DF D < Moy (70491575

where My = (14 2q)" 4 (r + 4)2.

Proof. Similarly to the proof of Theorem [6] we use the Taylor-type formula of
fe L;O’“LQ:

SO e
(32) f(z) :jgoT(x*t) +W11(ta17),

for z,t € R, where

1
33) L(ta):= / (=) [0+ ufe 1) — F20)] du.
0
Analogously for f0+1) € L3> and z,t € R we have

(34) FUED @) =D (@) + FU (@)t - 2) + (- 2) (@)
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with
1
(35) Bt = [ [0 alt - ) - 502 @)] .
0
By and the formula can be rewritten in the form:
) = Br) + S0 o)
1 1 . ”
+ ((TH)! - (TH)!)J“ ) (2)(z — )+
_ o \r+2 _ \r+2
e E e )
(36) =", (t,z) for a,tcR
(rr1) ’ '

Let now x € R be a fixed point. Using operator P,, and f and 7, we
get from :

F() = Pusy () = g 10D ) + in(az) for n>2%+1,
where -
Ty(@) 1= gy P (0 = 2) P2 a(ta)0)
To(@) 1= gy Pe (0= )72 [£0520) = 109 @) )
Ty(a) = j P (= 2) L))

Consequently we have
3
B 2 P () = 1= A DF g <023 Ty
=1

From and @7@ it follows that

e—4lzl .
o (=l ™In(t o))

vg(2)|Ta ()] <

: (r+1 e (roi )

X [Pn (|t _ xlr-‘rleQ\t—x\;x) +nP, <|t _ x|r+2eq|t—x|;x)}
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and further by we have

1 ri2). oo, 1\ n(r +2)! n?(r + 3)!
(38 Wil < e (250050 [ s * (g i)

Analogously, by @7@ there results that

£ @) < o (L5~ al)er

< edlzltalt—z] (1+nlt —2|)wr (f(7'+2); L, l)
n

and from :
1
|11 (t,x)] < / (1— u)”‘lwl (f(”‘Q);L;O;uH _ x|) eIt gy,
0
1
< ety (£ 1355 o) [ (1= )t
0
1 a . o1
< et (1l (F4D 1 )

T r+2
Using the above inequalities and (I5)), we deduce that

1 n (r + 3)n?
(r+2). yoo. =
(39) 1T2][0c,q < w1 (f Ly n) {(n — )3 (n— q)r+4:|
and
(10) [Tl <en (£ L5 ) [ (r + S)n” |
3 o0,q —= 1 b q n (n _ 2q),r.+3 (n _ 2q)r+4 ?

for n > 2¢g+1. Summarizing 7, we immediately obtain the desired inequality
B1). O

Remarks 1. Theorem@shows that the order of approximation of function f € LL-"
by Pn.r(f) is dependent on r and it improves if  grows. Moreover, Theorem 6 and
Theorem 2 show that the operators P,,.,. with » > 2 have better approximation
properties than P, for f € LL".

We mention also that the similar theorems can be obtained for the Gauss-Weierstrass
operators

Wo(f;2) = v/njn /R f@—te"Pdi, zeR, neN,

defined in exponential weighted spaces L(R) with the weighted function v,(z) =
e~ ,q > 0.
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