Zentralblatt MATH

Publications of (and about) Paul Erdös

Zbl.No:  323.52001
Autor:  Larman, D.G.(ed.); Rogers, C.A.(ed.) (Aitchison, P.W.; Alfsen, Erik M.; Beauzamy, B.; Bessaga, Czeslaw; Burton, G.R.; Choquet, Gustave; Davis, W.J.; Day, M.M.; Edwards, D.A.; Erdös, Paul; Ewald, G.; Figiel, T.; Fourneau, R.; Garling, D.J.H.; Grünbaum, B.; Guy, R.; Haydon, R.; James, R.C.; Klee, V.; Lima, A.; Lindenstrauss, J.; Mani, P.; Pelczynski, Aleksander; Petty, C.M.; Phelps, R.R.; Rosenthal, H.P.; Schneider, R.; Szankowski, A.; Tzafriri, L.; Wills, J.M.; Wright, J.D.M.)
Title:  Durham symposium on the relations between infinite-dimensional and finite-dimensional convexity. (In English)
Source:  Bull. Lond. Math. Soc. 8, 1-33 (1976).
Review:  Die Arbeit enthält Referate von folgenden Diskussionsbeiträgen:

P. W. Aitchison, An application of convexity to Turing machines.
E. M. Alfsen, Convexity and spectral theory.
B. Beauzamy, Minimal points and optimal sets in Banach spaces. –
C. Bessaga, Some topological aspects of the convexity theory. –
G. R. Burton, Convex bodies whose sections close to their boundaries are centrally symmetric.
G. Choquet, Extreme points and finiteness.
W. J. Davis, The ln1 problem.
M. M. Day, Invariant renorming.
D. A. Edwards, Measures on product spaces and the Holley-Preston inequalities.
P. Erdös, Combinatorial problems in elementary and metrical geometry.
G. Ewald, Approximation classes of convex polytopes.
T. Figiel, A short proof of Dvoretsky's theorem.
R. Fourneau, A characterization of simplices.
D. J. H. Garling, Chatterji's martingale convergence theorem.
B. Grünbaum, Regular polyhedra and complexes.
R. Guy, The Penrose pieces.
R. Haydon, Banach spaces containing l1(A) and types of measures on compact spaces.
R. C. James, Convexity and reflexivity.
V. Klee, Unique reducibility of subsets of topological linear spaces.
Å. Lima, Intersection properties of balls in Banach spaces.
J. Lindenstrauss, Local theory of Banach spaces.
J. Lindenstrauss, Type and superreflexivity.
P. Mani, Some characterizations of ellipsoids.
A. Pelczynski, The disc algebra as a Banachs pace.
C. M. Petty, Characterizations of Banach spaces.
R. R. Phelps, Differentiability of convex functions.
R. R. Phelps, The Bourgin-Edgar generalizations of the Choquet representation theorems.
C. A. Rogers, The relationship between finite-dimensional and infinite-dimensional convexity.
C. A. Rogers, Convex bodies that are invariant under a group of projectivities that acts transitively on their interiors.
C. A. Rogers, Comparison of the volumes of centrally symmetric convex bodies by their central sections.
H. P. Rosenthal, Normalized weakly null sequences with no unconditional subsequences.
H. P. Rosenthal, Weakly independent sequences and the Banach-Saks property.
R. Schneider, Curvature measures of convex bodies.
A. Szankowski, A Banach lattice without the approximation property.
L. Tzafriri, Orlicz spaces have the uniform approximation property.
J. M. Wills, 2-manifolds in the boundary complexes of convex polytopes.
J. D. M. Wright, An extension of the Murray-von-Neumann theory of types to compact convex sets.
Classif.:  * 52A05 Convex sets without dimension restrictions (convex geometry)

© European Mathematical Society & FIZ Karlsruhe & Springer-Verlag

Books Problems Set Theory Combinatorics Extremal Probl/Ramsey Th.
Graph Theory Add.Number Theory Mult.Number Theory Analysis Geometry
Probabability Personalia About Paul Erdös Publication Year Home Page