On the Matrix Norm
Subordinate to the Hölder Norm

J. Albrecht and P. P. Klein

Dedicated to Prof. L. von Woltersdorff on the occasion of his retirement

Abstract. For non-negative matrices P the matrix norm subordinate to the Hölder norm
of index p with $p \in (1, \infty)$ is determined by an eigenvalue problem $T\alpha = \lambda \alpha$, where T is a
homogeneous, strongly monotone operator.

Keywords: Hölder vector norms, subordinate matrix norms, non-negative matrices
AMS subject classification: Primary 15 A 60, 15 A 18, secondary 47H 07

1. Introduction

Assume $v \in \mathbb{R}^n$ and $M \in \mathbb{R}^{n \times n}$. For the Hölder vector norm

$$
\|v\|_p = \begin{cases}
\left[\sum_{i=1}^{n} |v_i|^p \right]^{1/p} & \text{for } 1 \leq p < \infty \\
\max_{i=1, \ldots, n} |v_i| & \text{for } p = \infty
\end{cases}
$$

the subordinate matrix norm

$$
\|M\|_p = \max_{v \in \mathbb{R}^n \setminus \{0\}} \frac{\|Mv\|_p}{\|v\|_p} (1 \leq p \leq \infty)
$$

can be easily calculated in the limiting cases:

$$
\|M\|_1 = \max_{j=1, \ldots, n} \sum_{i=1}^{m} |m_{ij}| \quad \text{and} \quad \|M\|_{\infty} = \max_{i=1, \ldots, m} \sum_{j=1}^{n} |m_{ij}|.
$$

Furthermore, the spectral norm is well known:

$$
\|M\|_2 = |\rho(M^TM)|^{1/2}.
$$

Beyond that in the special case of non-negative matrices $P \in \mathbb{R}^{n \times n}$ for all $p \in (1, \infty)$
the matrix norm $\|P\|_p$ can be determined by an eigenvalue problem, which is nonlinear
for $p \neq 2$.

ISSN 0232-2064 / 2.50 © Heldermann Verlag Berlin
2. The eigenvalue problem

Let $P \in \mathbb{R}^{n \times n}_+, \, p \in (1, \infty) \text{ and } (p-1)(q-1) = 1$. Because of $|Pv| \leq |P||v|$ for $v \in \mathbb{R}^n$,

$$
\|P\|_p = \max_{v \in \mathbb{R}^n \setminus \{0\}} \frac{\|Pv\|_p}{\|v\|_p}
$$

holds. Discussing this maximum problem leads to

Definition 1.

$$
T : \mathbb{R}^n_+ \to \mathbb{R}^n_+, \quad (Tv)_j = \left[\sum_{i=1}^{m} p_{ij} (Pv)_j^{p-1} \right]^{q-1} \quad (j = 1, \ldots, n)
$$

and

Theorem 1. Assume that the eigenvalue problem

$$
T\alpha = \lambda \alpha
$$

has an eigenvector α with positive components only, corresponding to a positive eigenvalue λ. Then

$$
\|P\|_p = \lambda^{1/q}.
$$

Proof. 1.1 In the case $(P\alpha)_i > 0$, for $v \in \mathbb{R}^n_+$,

$$
(Pv)_i = \sum_{j=1}^{n} p_{ij} v_j = \sum_{j=1}^{n} p_{ij} \alpha_j v_j = (P\alpha)_i \frac{\sum_{j=1}^{n} p_{ij} \alpha_j v_j}{\sum_{j=1}^{n} p_{ij} \alpha_j}
$$

holds and Hölder’s inequality for convex functions φ (see [6, 8])

$$
\varphi \left(\sum_{j=1}^{n} p_j t_j \right) \leq \sum_{j=1}^{n} p_j \varphi(t_j)
$$

yields

$$
(Pv)^p_i \leq (P\alpha)^p_i \frac{\sum_{j=1}^{n} p_{ij} \alpha_j v_j^p}{\sum_{j=1}^{n} p_{ij} \alpha_j} = (P\alpha)^{p-1}_i \sum_{j=1}^{n} \frac{p_{ij} \alpha_j}{\alpha_j} v_j^p.
$$

1.2 In the case $(P\alpha)_i = 0$, because of $\alpha_j > 0 \quad (j = 1, \ldots, n), \, p_{ij} = 0 \quad (j = 1, \ldots, n)$ holds and therefore $(Pv)_i = 0$ is valid for all $v \in \mathbb{R}^n_+$.

2. Hence it follows that

$$
\sum_{i=1}^{m} (Pv)_i^p \leq \sum_{j=1}^{n} \sum_{i=1}^{m} p_{ij} (P\alpha)_i^{p-1} v_j^p = \sum_{j=1}^{n} (T\alpha)_j^{p-1} v_j^p = \lambda^{p-1} \sum_{j=1}^{n} v_j^p
$$

and

$$
\|Pv\|_p \leq \lambda^{1/q} \|v\|_p.
$$

If $v = \alpha$, then equality holds \blacksquare

The theorem is illustrated by the following

Example $(f \in \mathbb{R}^n, \, g \in \mathbb{R}_+^n)$.

$$
P = fg^T : \quad \alpha = (g_i^{q-1})_{i=1}^n, \quad \|P\|_p = \|f\|_p \|g\|_q.
$$

The assumption that the eigenvalue problem $T\alpha = \lambda \alpha$ has an eigenvector α with positive components only, corresponding to a positive eigenvalue λ, will be shown to be fulfilled if $P^T P$ is irreducible.
3. P^TP irreducible

In a real linear space X let the cone K define the partial ordering \le. Eigenvalue problems with operators $T : K \to K$ having the properties

1. T is monotone on K, i.e. $u, v \in K$ with $u \le v$ implies $Tu \le Tv$

2. T is homogeneous on K, i.e. $T(cv) = cTv$ for $c \ge 0$ and $v \in K$

3. T is completely continuous on K

have been investigated by Krein and Rutman [7] and by Bohl [2]. The results in [2] necessitate another assumption, namely that T is strongly monotone on K. In the case $X = \mathbb{R}^n$, $K = \mathbb{R}^n_+$ this means the following.

Definition 2. An operator T being monotone on \mathbb{R}^n_+ is called *strongly monotone* on \mathbb{R}^n_+, if for all $v, w \in \mathbb{R}^n_+$ with $v \le w$ and $v \neq w$ there exists a number $\mu \in \mathbb{N}$ such that

$$(T^\mu v)_j < (T^\mu w)_j \quad (j = 1, \ldots, n)$$

holds.

By the following lemma the strong monotonicity of the operator T defined in (2) can be concluded from the strong monotonicity of P^TP.

Lemma 1. Assume $P \in \mathbb{R}^{n \times n}_+$ and $p \in (1, \infty)$. For arbitrary vectors $v, w \in \mathbb{R}^n_+$ with $v \le w$, all $v \in \mathbb{N}$ and each fixed $j \in \{1, \ldots, n\}$ the equivalence

$$(T^\nu v)_j = (T^\nu w)_j \iff ((P^TP)^\nu v)_j = ((P^TP)^\nu w)_j.$$ \hspace{1cm} (5)

holds.

Proof. 1. $\nu = 1$: Let $j \in \{1, \ldots, n\}$ be fixed. Then $(Tv)_j = (Tw)_j$ is equivalent to

$$\sum_{i=1}^m p_{ij}((Pw)_i^{p-1} - (Pu)_i^{p-1}) = 0.$$ \hspace{1cm} (6)

As $v \le w$ implies $Pv \le Pw$ and $(Pu)_i^{p-1} \le (Pu)_i^{p-1}$ ($i = 1, \ldots, m$), all terms of (6) are non-negative. For every $i \in \{1, \ldots, m\}$ with $p_{ij} > 0$ equation (6) requires that $(Pw)_i^{p-1} - (Pu)_i^{p-1} = 0$, yielding $(P(w - v))_i = 0$. Therefore

$$\sum_{i=1}^m p_{ij}(P(w - v))_i = 0$$ \hspace{1cm} (7)

follows and thus $(P^TPv)_j = (P^TPw)_j$ holds. Analogously (6) can be deduced from (7).

2. Induction from ν to $\nu + 1$: Let $j \in \{1, \ldots, n\}$ be fixed. As T is monotone, $v \le w$ implies $T^\nu v \le T^\nu w$. Define $\tilde{v} = T^\nu v$ and $\tilde{w} = T^\nu w$. Using (5) with $\nu = 1$ leads to

$$(T\tilde{v})_j = (T\tilde{w})_j \iff (P^TP\tilde{v})_j = (P^TP\tilde{w})_j.$$
i.e. \((T^{\nu+1}v)_j = (T^{\nu+1}w)_j\) is equivalent to

\[
\sum_{k=1}^{n} (PT)_{jk}(T^\nu w - T^\nu v)_k = 0. \tag{8}
\]

As all terms in (8) are non-negative, \((T^\nu w - T^\nu v)_k = 0\) holds for every \(k \in \{1, \ldots, n\}\) with \((PT)_{jk} > 0\). Since (5) is assumed to be true for \(\nu\),

\[
\sum_{k=1}^{n} (PT)_{jk}((PT)^\nu (w - v))_k = 0 \tag{9}
\]

follows and thus \(((PT)^{\nu+1}v)_j = ((PT)^{\nu+1}w)_j\) is obtained. In the same way (8) can be concluded from (9) \(\blacksquare\)

Theorem 2. Assume \(P \in \mathbb{R}^{m \times n}_+, p \in (1, \infty)\) and \(PT\) irreducible. Then:

1. \(PT\) and \(T\) are strongly monotone on \(K\).

2. The eigenvalue problem \(T\alpha = \lambda\alpha\) has an eigenvector \(\alpha\) with positive components only, corresponding to a positive eigenvalue \(\lambda\).

Proof. 1. All diagonal elements of \(PT\) are positive. Assuming the contrary, namely that \((PT)_{jj} = 0\) for at least one \(j \in \{1, \ldots, n\}\), all elements of the \(j\)-th column of \(P\) would be zero. This would imply \(PT\) to be reducible, in contradiction to the assumption.

Since \(PT\) is irreducible and as its diagonal elements are positive, [2; p. 111/Theorem 2.3] says that \((PT)^{n-1}\) consists of positive elements only, i.e. \(PT\) is strongly monotone. Using Lemma 1 for \(\nu = n - 1\) proves that \(T\) is strongly monotone as well.

2. As the operator \(T\) is completely continuous and strongly monotone, by [2; p. 53/Theorem 2.7] with \(S = T\), \(T\) has an eigenvector \(\alpha\) with positive components only and a corresponding positive eigenvalue \(\lambda\) \(\blacksquare\)

Example. Doubly stochastic matrices, e.g.

\[
P = \frac{1}{15} \begin{pmatrix} 4 & 9 & 2 \\ 3 & 5 & 7 \\ 8 & 1 & 6 \end{pmatrix} : \quad \alpha = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix},\quad \|P\|_p = 1.
\]

Theorem 3. Assume \(P \in \mathbb{R}^{m \times n}_+, p \in (1, \infty)\) and \(PT\) irreducible. Starting from \(\alpha^{(1)} \in \mathbb{R}^n_+\) having positive components only, the iterates \(\alpha^{(k+1)}\) defined by

\[
\alpha^{(k+1)} := T\alpha^{(k)} \quad (k \in \mathbb{N})
\]

have the same property. With

\[
\Delta^{(k)} := \min_{j=1, \ldots, n} \frac{\alpha_j^{(k+1)}}{\alpha_j^{(k)}} \quad \text{and} \quad \bar{\lambda}^{(k)} := \max_{j=1, \ldots, n} \frac{\alpha_j^{(k+1)}}{\alpha_j^{(k)}} \quad (k \in \mathbb{N})
\]

the eigenvalue inclusion
\[\lambda^{(1)} \leq \ldots \leq \lambda^{(k)} \leq \lambda^{(k+1)} \leq \ldots \leq \lambda \leq \ldots \leq \lambda^{(k)} \leq \lambda^{(k)} \leq \ldots \leq \lambda^{(1)} \] (12)

is obtained. Furthermore,
\[\lim_{k \to \infty} \lambda^{(k)} = \lambda = \lim_{k \to \infty} \lambda^{(k)} \] (13)
holds.

Proof. The monotonicity and the convergence of the sequences \(\{\lambda^{(k)}\}_{k \in \mathbb{N}} \) and \(\{-\lambda^{(k)}\}_{k \in \mathbb{N}} \) follow from [2, p. 53/Theorem 2.7] as well.

Remark. For \(p = 2 \) Theorem 3 reduces to the inclusion theorem of Collatz [3] for non-negative irreducible matrices applied to \(P^TP \).

4. \(P^TP \) reducible

Allowing \(P^TP \) to be reducible, it may be assumed that \(P^TP \) already has the normal block diagonal form of symmetric reducible matrices [9]. Otherwise the columns of \(P \) have to be permuted appropriately, which implies the same permutations for the rows of \(P^T \) and thus results in the normal form of \(P^TP \). Permuting the columns of \(P \) has no effect on \(\|P\|_p \).

According to the number and the sizes of the diagonal submatrices of \(P^TP \), the matrix \(P \in \mathbb{R}^{n \times n}_+ \) is split up into column blocks
\[P = (P_1, \ldots, P_s) \quad \text{with} \quad P_\sigma \in \mathbb{R}^{n_\sigma \times n_\sigma}_+ \quad (\sigma = 1, \ldots, s). \] (14)

Correspondingly, a vector \(v \in \mathbb{R}^n_+ \) is decomposed as
\[v = \begin{pmatrix} v_1 \\ \vdots \\ v_s \end{pmatrix} \quad \text{with} \quad v_\sigma \in \mathbb{R}^{n_\sigma}_+ \quad (\sigma = 1, \ldots, s). \] (15)

The block structure of \(P^TP \) implies
\[P_\rho^TP_\sigma = \Theta_{\rho\sigma} \in \mathbb{R}^{n_\rho \times n_\sigma}_+ \quad (\rho \neq \sigma; \ \rho, \sigma = 1, \ldots, s) \]
which means that each non-zero row of \(P \) has non-zero elements exactly in one column block of \(P \). Therefore, taking notice of (15),
\[\|Pv\|_p = \sum_{\sigma=1}^{s} \|P_\sigma v_\sigma\|_p^p \quad (v \in \mathbb{R}^n_+) \] (16)
holds.
Theorem 4. Assume $P \in \mathbb{R}_+^{m \times n}$ and $p \in (1, \infty)$. Let P^TP be reducible such that

$$P^TP = \text{diag}(P_1^TP_1, \ldots, P_s^TP_s)$$

(17)

and assume each diagonal submatrix $P_\sigma^TP_\sigma$ ($\sigma = 1, \ldots, s$) to be irreducible. Consequently, the eigenvalue problem (3) is split up into subproblems of the same type

$$T_\sigma \alpha_\sigma = \lambda_\sigma \alpha_\sigma \quad (\sigma = 1, \ldots, s)$$

(18)

where each $T_\sigma : \mathbb{R}_+^{n_\sigma} \to \mathbb{R}_+^{n_\sigma}$ results from (2) with P_σ instead of P. Then

$$\|P\|_p = \lambda^{1/q} \quad \text{with} \quad \lambda = \max_{\sigma=1,\ldots,s} \lambda_\sigma$$

(19)

holds.

Proof. For each eigenvalue problem (18) Theorem 2 guarantees the existence of an eigenvector α_σ with positive components only, corresponding to a positive eigenvalue λ_σ. Therefore Theorem 1 ensures

$$\|P_\sigma v_\sigma\|_p^{p-1} \leq \lambda_\sigma^{p-1} \|v_\sigma\|_p^{p-1} \quad (v_\sigma \in \mathbb{R}_+^{n_\sigma}, \sigma = 1, \ldots, s)$$

with equality, if $v_\sigma = \alpha_\sigma$ ($\sigma = 1, \ldots, s$). For $v \in \mathbb{R}_+^n$, using (16),

$$\|Pv\|_p^{p-1} = \sum_{\sigma=1}^s \|P_\sigma v_\sigma\|_p^{p-1} \leq \lambda_\sigma^{p-1} \|v_\sigma\|_p^{p-1} \leq \sum_{\sigma=1}^s \|v_\sigma\|_p^{p-1} = \lambda^{p-1} \|v\|_p^{p-1}$$

follows, implying

$$\|Pv\|_p \leq \lambda^{1/q} \|v\|_p.$$

Equality holds, if v satisfies

$$v_\sigma = \begin{cases} \alpha_\sigma & \text{for } \lambda_\sigma = \lambda \\ \theta_\sigma & \text{for } \lambda_\sigma < \lambda \end{cases} \quad (\sigma = 1, \ldots, s)$$

Remark. Since permuting the rows of P leaves P^TP as well as $\|P\|_p$ unchanged, additional splittings of $P \in \mathbb{R}_+^{n \times n}$ into row blocks can be obtained such that

$$P = (P_\rho) \quad \text{with} \quad P_\rho \in \mathbb{R}_+^{m_\rho \times n_\rho} \quad (\rho, \sigma = 1, \ldots, s)$$

and, with π denoting any permutation of $\{1, \ldots, s\}$, each column block P_σ has exactly one non-zero subblock $P_{\pi(\sigma)\sigma}$ ($\sigma = 1, \ldots, s$).

Example ($f \in \mathbb{R}_+^{m-1}, g \in \mathbb{R}_+^{n-1}$).

$$P = \begin{pmatrix} \Theta & f^T \\ g & 0 \end{pmatrix} : \quad \|P\|_p = \max \{\|f\|_p, \|g\|_q\}.$$

Theorem 4 is supplemented by the following

Remark. Allowing P^TP to have a zero diagonal submatrix $P_\sigma^TP_\sigma$, resulting from a zero column block P_σ^*, then T_σ^* is the zero operator with the eigenvalue $\lambda_\sigma^* = 0$. This leaves the result of Theorem 4 unchanged.
5. Numerical example

Applying discretization methods to boundary value problems with partial differential equations, often leads to linear systems

\[v = Pv + r \] \hspace{1cm} (20)

with non-negative matrices \(P \). If \(P \) is symmetric, \(\rho(P) = \|P\|_2 \leq \|P\|_p \) for \(1 \leq p \leq \infty \) holds. In case \(P \) is non-symmetric, however, \(p^* \) with \(\|P\|_{p^*} = \min\{\|P\|_p | 1 \leq p \leq \infty \} \) is generally not known in advance.

Applying the finite difference method to the boundary value problem [5]

\[
- \left(u_{xx} + u_{yy} + \frac{3}{5-y} u_y \right) = 1 \quad \text{in} \quad B = \left(-\frac{1}{2}, \frac{1}{2} \right) \times (-1, 1) \\
\quad u = 0 \quad \text{on} \quad \partial B
\]

red-black ordering of the unknowns generates linear systems (20) with \(P \) non-symmetric, non-negative and \(P^TP \) reducible:

\[
P = \begin{pmatrix} \Theta_{11} & P_{12} \\ P_{21} & \Theta_{22} \end{pmatrix}, \quad \text{and} \quad P^TP = \begin{pmatrix} P_{11}^TP_{21} & \Theta_{12} \\ P_{21}^TP_{12} & \Theta_{22} \end{pmatrix}. \] \hspace{1cm} (21)

For different mesh widths \(h \) the following results were obtained by discretely minimizing \(\|P\|_p \) with respect to \(p \) in a finite interval:

<table>
<thead>
<tr>
<th>(h)</th>
<th>(n)</th>
<th>(\rho(P))</th>
<th>(p^*)</th>
<th>(|P|_{p^*})</th>
<th>(|P|_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{6})</td>
<td>33</td>
<td>0.91496</td>
<td>2.71</td>
<td>0.94058</td>
<td>0.94608</td>
</tr>
<tr>
<td>(\frac{1}{8})</td>
<td>60</td>
<td>0.95175</td>
<td>2.99</td>
<td>0.97062</td>
<td>0.97689</td>
</tr>
<tr>
<td>(\frac{1}{10})</td>
<td>138</td>
<td>0.97843</td>
<td>3.62</td>
<td>0.99003</td>
<td>0.99690</td>
</tr>
<tr>
<td>(\frac{1}{12})</td>
<td>248</td>
<td>0.98784</td>
<td>4.38</td>
<td>0.99587</td>
<td>1.00289</td>
</tr>
<tr>
<td>(\frac{1}{14})</td>
<td>564</td>
<td>0.99459</td>
<td>6.79</td>
<td>0.99915</td>
<td>1.00632</td>
</tr>
<tr>
<td>(\frac{1}{16})</td>
<td>1008</td>
<td>0.99696</td>
<td>12.6</td>
<td>0.99986</td>
<td>1.00719</td>
</tr>
</tbody>
</table>

Table 1: Discrete minimization of \(\|P\|_p \)

Rewriting the boundary value problem in self-adjoint form [5]

\[
- \left(\frac{1}{(5-y)^3} u_x \right)_x + \left(\frac{1}{(5-y)^3} u_y \right)_y = \frac{1}{(5-y)^3} \quad \text{in} \quad B, \\
\quad u = 0 \quad \text{on} \quad \partial B
\]

and applying the finite difference method with red-black ordering of the unknowns again, linear systems (20), (21) are obtained, where \(P \) now is symmetric and non-negative. The spectral radii \(\rho(P) \) in this case are slightly above those given in Table 1.
References

Received 02.06.1998