To Ada

A few remarks about symplectic filling

Yakov Eliashberg

Department of Mathematics, Stanford University
Stanford CA 94305-2125, USA

Email: eliash@math.stanford.edu

Abstract

We show that any compact symplectic manifold \((W; !)\) with boundary embeds as a domain into a closed symplectic manifold, provided that there exists a contact plane on \(@W\) which is weakly compatible with \(!\), i.e. the restriction \(!|_{\partial W}\) does not vanish and the contact orientation of \(@W\) and its orientation as the boundary of the symplectic manifold \(W\) coincide. This result provides a useful tool for new applications by Ozsvath-Szabo of Seiberg-Witten Floer homology theories in three-dimensional topology and has helped complete the Kronheimer-Mrowka proof of Property P for knots.

AMS Classification numbers

Primary: 53C15
Secondary: 57M50

Keywords: Contact manifold, symplectic filling, symplectic Lefschetz fibration, open book decomposition

Proposed: Leonid Polterovich Received: 25 November 2003
Seconded: Peter Ozsvath, Dieter Kotschick Revised: 13 January 2004
1 Introduction

All manifolds which we consider in this article are assumed oriented. A contact manifold V of dimension three carries a canonical orientation. In this case we will denote by $-V$ the contact manifold with the opposite orientation. Contact plane fields are assumed co-oriented, and therefore oriented. Symplectic manifolds are canonically oriented, and so are their boundaries.

We prove in this article the following theorem:

Theorem 1.1 Let $(V_{\mathcal{O}})$ be a contact manifold and ω a closed 2-form on V such that $\omega_{\mathcal{O}} > 0$. Suppose that we are given an open book decomposition of V with a binding B. Let V^0 be obtained from V by a Morse surgery along B with a canonical 0-framing, so that V^0 is fibered over S^1. Let W be the corresponding cobordism, $\partial W = (-V)\cup V^0$. Then W admits a symplectic form Ω such that $\Omega_{\mathcal{O}} = \omega$ and Ω is positive on fibers of the fibration $V^0\rightarrow S^1$.

Remark 1.2 Note that the binding B has a canonical decomposition of its tubular neighborhood given by the pages of the book. The 0-surgery along B is the Morse surgery associated with this decomposition. If the binding is disconnected then we assume that the surgery is performed simultaneously along all the components of B.

We will deduce the following result from Theorem 1.1:

Theorem 1.3 Let $(V_{\mathcal{O}})$ and ω be as in Theorem 1.1. Then there exists a symplectic manifold $(W^0_{\mathcal{O}}\Omega)$ such that $\partial W^0 = -V$ and $\Omega^0_{\mathcal{O}} = \omega$. Moreover, one can arrange that $H_1(W^0) = 0$, and that $(W^0_{\mathcal{O}}\Omega)$ contains the symplectic cobordism $(W;\Omega)$ constructed in Theorem 1.1 as a subdomain adjacent to the boundary. In particular, any symplectic manifold which weakly fills (see Section 4 below) the contact manifold $(V_{\mathcal{O}})$ can be symplectically embedded as a subdomain into a closed symplectic manifold.

Corollary 1.4 Any weakly (resp. strongly) semi-fillable (see [10]) contact manifold is weakly (resp. strongly) fillable.

Remark 1.5 Theorem 1.1 serves as a missing ingredient in proving that the Ozsvath-Szabo contact invariant c^1 does not vanish for weakly symplectically fillable (and hence for non-existing anymore semi-fillable) contact structures.

This observation is due to Kronheimer and Mrowka, see [20].
A few remarks about symplectic filling

This and other applications of the results of this article in the Heegaard Floer homology theory are discussed in the paper of Peter Ozsvath and Zoltan Szabo, see [27]. The observation made in this paper also helped to streamline the program of Peter Kronheimer and Tomasz Mrowka for proving the Property P for knots, see their paper [20].

Acknowledgements This article is my answer to the question I was asked by Olga Plamenevskaya and David Gay during the workshop on Floer homology for 3-manifolds in Ban International Research Station. I want to thank them, as well as Selman Akbulut, Michael Freedman, Robion Kirby, Peter Kronheimer, Robert Lipshitz, Tomasz Mrowka, Peter Ozsvath, Michael Sullivan and Zoltan Szabo for stimulating discussions, and Augustin Banyaga, Steven Kerckho, Leonid Polterovich and Andras Stipsicz for providing me with the necessary information. I am grateful to John Etnyre, Tomasz Mrowka, Andras Stipsicz and Leonid Polterovich for their critical remarks concerning a preliminary version of this paper. I also want to thank Peter Kronheimer and Tom Mrowka with sharing with me their alternative \"flux- xing argument\" (see Lemma 3.4 below).

This research was partially supported by NSF grants DMS-0204603 and DMS-0244663.

2 Proof of Theorem 1.1

We begin with the following lemma which is a slight reformulation of Proposition 3.1 in [6]. A similar statement is contained also in [19].

Lemma 2.1 Let \((V; \lambda)\) be as in Theorem 1.1. Then given any contact form \(\lambda\) for \(V\) and any \(C > 0\) one can find a symplectic form \(\Omega\) on \(V\) such that

a) \(\Omega_j V \mid _{0} = \lambda\);
b) \(\Omega_j V \mid _{[1-\epsilon, 1]} = \lambda + C \epsilon(t)\), where \(t \in [1-\epsilon, 1]\) and \(0 < \epsilon < 1\);
c) \(\Omega\) induces the negative orientation on \(V\) and positive on \(V\) for \(t > 1\).

Proof By assumption

\[j := f d j = d(f j) \]

for a positive function \(V \! \to \mathbb{R} \). Set \(\sim = f \). Then \(! = d\sim + \sim^\wedge \). Take a smooth function \(h: V \to [0; 1] \! \to \mathbb{R} \) such that

\[
h_{\sim}^0 = 0; \quad h_{\sim}^{[1-\sim; 1]} = \frac{C\tau}{f}; \quad \frac{dh}{dt} > 0;
\]

where \(\tau \) is the coordinate corresponding to the projection \(V \to [0; 1] \) and \(\sim \to V \). Then we have

\[
\Omega = d\sim + \sim^\wedge + dV h^\wedge \sim + \frac{dh}{dt} \sim^\wedge
\]

where \(dV h \) denotes the differential of \(h \) along \(V \). Then

\[
\Omega \wedge \Omega = 2\frac{dh}{dt} \sim^\wedge \sim d\sim > 0;
\]

Hence \(\Omega \) is symplectic and it clearly satisfies the conditions a)\{c). \(\square \)

Let us recall that a contact form on \(V \) is called compatible with the given open book decomposition (see [14]) if

a) there exists a neighborhood \(U \) of the binding \(B \), and the coordinates \((r'; u) \in [0; R] \times \mathbb{R}^2 \times \mathbb{Z} \) such that

\[
U = frg; \quad j_U = h(r)(du + r^2d' r);
\]

where the positive \(C^1 \) function \(h \) satisfies the conditions

\[
h(r) - h(0) = -r^2 \quad \text{near} \quad r = 0 \quad \text{and} \quad h'(r) < 0 \quad \text{for all} \quad r > 0;
\]

b) the parts of pages of the book in \(U \) are given by equations \(r' = \text{const} \);

c) \(d \) does not vanish on the pages of the book (with the binding deleted).

Remark 2.2 An admissible contact form defines an orientation of pages and hence an orientation of the binding \(B \) as the boundary of a page. On the other hand, the form defines a co-orientation of the contact plane \(\xi \) and hence an orientation of \(B \) as a transversal curve. These two orientations of \(B \) coincide.

Remark 2.3 By varying admissible forms for a given contact plane \(\xi \) one can arrange any function \(h \) with the properties described in a). Indeed, suppose we are given another function \(\hat{h} \) which satisfies a). We can assume without loss of generality that \(\hat{h} \) has the presentation a) on a bigger domain \(U^0 = fr \mathbb{R}^2 \mathbb{G} \) for \(R^0 > R \). Let us choose \(c > 0 \) such that \(\hat{h}(R) > ch(R) \) and extend \(\hat{h} \) to \([0; R^0] \) in such a way that \(\hat{h}(r) < 0 \) and \(\hat{h}(r) = ch(r) \) near \(R^0 \). Then the form \(\hat{h} \) on \(U^0 \) extended to the rest of the manifold \(V \) as \(c \) is admissible for the given open book decomposition.
Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Take a constant \(a > 0\) and consider a smooth on \([0; 1]\) function \(g: [0; 1] \to \mathbb{R}\) such that \(g|_{[0, 1]} = a\), \(g(t) = \sqrt{1-t^2}\) for \(t\) near 1 and \(g^2 < 0\) on \((1-\epsilon; 1)\).

In the standard symplectic \(\mathbb{R}^4\) which we identify with \(\mathbb{C}^2\) with coordinates \((z_1 = r_1 e^{i\theta_1} = x_1 + iy_1; z_2 = r_2 e^{i\theta_2} = x_2 + iy_2)\) let us consider a domain \(\mathcal{P} = \{r_1 \leq g(r_2); r_2 \in [0; 1]\}\).

The domain \(\mathcal{P}\) is contained in the polydisc \(\mathcal{P} = \{r_1 \leq a; r_2 \in [1-\epsilon; 1]\}\) and can be viewed as obtained by smoothing the corners of \(\mathcal{P}\).

Let us denote by \(\Gamma\) the part of the boundary of \(\mathcal{P}\) given by \(\Gamma = \{r_1 = g(r_2); r_2 \in [1-\epsilon; 1]\}\).

Note that \(\Gamma\) is \(C^1\) tangent to \(\partial \mathcal{P}\) near its boundary. The primitive \(\gamma = \frac{1}{2} r_2 d\theta_1 + r_2^2 d\theta_2\) of the standard symplectic form \(\omega_0 = dx_1 \wedge dy_1 + dx_2 \wedge dy_2 = r_1 dr_1 \wedge d\theta_1 + r_2 dr_2 \wedge d\theta_2\) restricts to \(\Gamma\) as a contact form \(\gamma|_{\Gamma} = \frac{r_2^2}{2} \frac{g^2(r_2)}{r_2^2} d\theta_1 + d\theta_2\).

Consider the product \(G = S^2_+ \times D^2\) with the split symplectic structure \(\omega_0 = \omega_1 + \omega_2\), where the total area of the form \(\omega_1\) on \(S^2\) is equal to \(2\pi\) and the total area of the form \(\omega_2\) on the disc \(D^2\) is equal to \(\alpha^2\). Note that if \(S^2_+\) and \(S^2_-\) denote the upper and lower hemispheres of \(S^2\) of equal area, then there exists a symplectomorphism \(P ! S^2_+ \times D^2 \times S^2 \times D^2 = G\).

Let \(H\) be the closure of \(G\) in \((\mathcal{P})\) and \(\mathcal{P}\) denote the image \((\Gamma) \cap \mathcal{H}\). Note that \(\Gamma \cap \mathcal{H} \cap \mathcal{P} = \{x \in \mathcal{P} \mid 1 \leq x_2 \leq 2\}\), \(x_1 \in [0; 1]\). The part is fibered by discs \(D_x\); \(x \in \mathcal{P}\), which are symplectic with respect to the form \(\omega_0\).

Geometry & Topology, Volume 8 (2004)
Consider now a contact form on V compatible with the given open book decomposition. In particular, on a neighborhood

$$U = [0; R], \quad \mathbb{R} \to \mathbb{Z}, \quad \mathbb{R} \to \mathbb{Z} \quad V$$

of the binding B we have $j_U = h(r)(du + r^2d')$, where the positive C^1 function h satisfies the conditions

$$h(r) - h(0) = -r^2 \text{ near } r = 0 \text{ and } h(0) < 0 \text{ for all } r > 0.$$

Let us choose $a = \frac{R}{2}$, and consider a diffeomorphism $F: \Gamma \to U$ given by the formula

$$r = \frac{g(r_2)}{r_2}; \quad \gamma = 1; \quad u = 2.$$

The function

$$r_2 \gamma \frac{g(r_2)}{r_2}$$

maps $[1; \frac{1}{2}]$ onto $[0; 2a] = [0; R]$. Let $\beta: [0; R]! [1; \frac{1}{2}]$ be the inverse function. Then

$$F \gamma = \frac{2(r)}{2} r^2d' + du :$$

Hence F is a contactomorphism

$$(\Gamma; f \gamma = 0g)! (U; f = 0g =).$$

Moreover, the form $F \gamma$, extended to V as on $V \cup U$, defines on V a smooth contact form compatible with the given open book decomposition.

Now we use Lemma 2.1 to define on the collar $V \cup [0; 1]$ a symplectic form Ω which satisfies the conditions 2.1a)-(c), where the constant C will be chosen later. In particular, near $V \setminus 1$ we have $\Omega = Cdt + \ldots$. Viewing Γ as a part of the boundary of the handle H, we can extend F to a symplectomorphism, still denoted by F, of a neighborhood of Γ in H endowed with the standard symplectic structure $C!_0$ to a neighborhood of $U \cup V = V \cup [0; 1]$ in $V \cup [0; 1]$ endowed with the symplectic structure $C dt(t)$. Note that the closed form $F \gamma$ is exact:

$$F \gamma = d;$$

and hence it extends to H as $\beta = d(\ldots)$ where β is a cut-o function equal to 0 outside a neighborhood of Γ in H. If C is chosen sufficiently large then the form $\Omega_0 = C!_0 + \beta$ is symplectic, and its restrictions to the discs $D_x \times \mathbb{D}^2$ are symplectic as well. Hence the map F can be used for attaching the symplectic handle $(H; C!_0 + \beta)$ to $V \cup [0; 1]$ along U. The resulted symplectic manifold

$$W = V \cup [0; 1] \cup \mathbb{D}^2.$$
is the required symplectic cobordism. Indeed we have
\[@ (W; \Omega) = (\overline{-V}; !) \] where the component \(V^0 \) of its boundary is fibered over \(S^1 \) by closed surfaces formed by parts of pages of the book inside \(V \) and discs \(D_x \). These surfaces are symplectic with respect to the form \(!^0 = \Omega_{V^0} \).

3 Filling of symplectic fibrations over circle

A pair \((V; !)\), where \(V \) is an oriented 3-manifold fibered over \(S^1 = \mathbb{R}/\mathbb{Z} \), and \(! \) is a closed 2-form which is positive on the fibers of the fibration, will be referred to as a symplectic fibration over \(S^1 \). The projection \(V \to S^1 \) will be denoted by \(\pi \). We will assume that all symplectic fibrations we consider are normalized by the condition that the integral of \(! \) over a fiber is equal to 1. The form \(! \) induces a 1-dimensional characteristic foliation \(F ! \) on \(V \) generated by the kernel of \(! \). This foliation is transversal to the fibers of the fibration. The orientation of \(V \) together with the symplectic orientation of the fibers defines an orientation of \(F ! \). Fixing a fiber \(F_0 \) over \(0 \in S^1 = \mathbb{R}/\mathbb{Z} \) we can define the holonomy diffeomorphism \(\text{Hol}_{V; !} : F_0 \to F_0 \). This is an area preserving diffeomorphism which defines \((V; !)\) uniquely up to a fiber preserving diffeomorphism fixed on \(F_0 \). Note that \(\text{Hol}_{-V; !} = \text{Hol}_{V; !}^{-1} \). Two symplectic fibrations are equivalent via an equivalence fixed on \(F_0 \) if and only if their holonomy diffeomorphisms coincide. If for symplectic fibrations \((V; !_0)\) and \((V; !_1)\), the holonomy diffeomorphisms \(\text{Hol}_{V; !_0} \) and \(\text{Hol}_{V; !_1} \) are symplectically (resp. Hamiltonian) isotopic then \((V; !_0)\) and \((V; !_1)\) are called isotopic (resp. Hamiltonian isotopic). For a fixed smooth fibration \(V \to S^1 \) the isotopy between \((V; !_0)\) and \((V; !_1)\) is equivalent to a homotopy of forms \(!_0 \) and \(!_1 \) through closed forms positive on fibers of the fibration.

We will prove in this section

Theorem 3.1. For any symplectic fibration \((V; !)\) over \(S^1 \) there exists a compact symplectic 4-manifold \((W; \Omega)\) with
\[@ (W; \Omega) = (V; !) \]
One can additionally arrange that \(H_1(W; \mathbb{Z}) = 0 \).\(^2\)

The first ingredient in the proof in the following theorem of Akbulut and Ozbagci.

\(^2\)This was observed by Kronheimer and Mrowka, see [20].

Theorem 3.2 (See [2], Theorem 2.1) Theorem 3.1 holds up to homotopy. More precise, for any symplectic bration $(V; !)$ as above there exists a compact symplectic 4-manifold $(W; \Omega)$ with $H_1(W) = 0$ which has a structure of a symplectic Lefschetz bration over D^2 and which restricts to $S^1 = \partial D^2$ as a symplectic bration $(V; \bar{e})$ homotopic to $(V; !)$.

The proof of this theorem is based on an observation (which the authors said they learned from Ivan Smith) that any element of the mapping class group of a closed surface can be presented as a composition of positive Dehn twists.\footnote{Here is a simple argument due to Peter Kronheimer which shows this. Take any generic genuine (i.e. having exceptional fibers) Lefschetz bration over \mathbb{CP}^1 with the fiber of prescribed genus. Then the product of $+1$ twists corresponding to vanishing cycles is the identity. Therefore, a -1 twist (and hence any -1 twist) is a product of $+1$ twists.} W P Thurston's construction (see [28]) of symplectic structure on surface brations, and its adaptation by R E Gompf (see [15]) for Lefschetz brations with positive Dehn twists around exceptional fibers. Exploring the freedom of the construction one can arrange that $H_1(W; \mathbb{Z}) = 0$. Indeed, for a Lefschetz bration over D^2 we have $H_1(W) = H_1(F_0) = \mathbb{C}$, where \mathbb{C} is the subgroup generated by the vanishing cycles. But the already mentioned above fact that the mapping class group is generated as a monoid by positive Dehn twists allows us to make any cycle in $H_1(F_0)$ vanishing.

The second ingredient in the proof of Theorem 3.1 is the following proposition based on a variation of an argument presented in [20], see Lemma 3.4 below.

Proposition 3.3 Let $(W; \Omega)$ be a Lefschetz bration over D^2 and $(V; !)$ a symplectic bration over S^1 which bounds it, $\partial(W; \Omega) = (V; \bar{e})$. Then for any symplectic bration $(V; \bar{e})$ homotopic to $(V; !)$ there exists a symplectic form $\bar{\Omega}$ on W such that $\partial(W; \bar{\Omega}) = (V; \bar{\Omega})$ where $(V; \bar{\Omega})$ is Hamiltonian isotopic to $(V; !)$.

In other words, Proposition 3.3 together with Theorem 3.2 imply Theorem 3.1 up to Hamiltonian isotopy. Before proceeding with the proof we recall some standard facts about the flux homomorphism.

Let F_0 be a closed oriented surface of genus g with an area form $!$. We denote by $D = D(F_0)$ the group of area preserving diffeomorphisms of F_0 and by D_0 its identity component. The Lie algebra of D_0 consists of symplectic vector fields, i.e. the vector fields, ! dual to closed forms. Hence, given an isomorphism

f_t \in D_0 \) which connects \(f_0 = \text{Id} \) with \(f_1 = f \) then for the time-dependent vector field \(\nu_t \) which generates \(f_t \), i.e.

\[
\nu_t(f_t(x)) = \frac{df_t(x)}{dt}; \quad t \in [0; 1]; \quad x \in F_0;
\]

the form \(t = \nu_t \) is closed for all \(t \in [0; 1] \). Diomorphisms generated by time-dependent vector fields \((1)\) dual to exact 1-forms form a subgroup \(D_H \) of Hamiltonian difomorphisms. This subgroup is the kernel of a flux, or Calabi homomorphism (see [5]) which is defined as follows. Given \(\nu_t \) generating \(f \) as in \((1)\) as its time-one map, we define

\[
\text{Flux}(f) = \int_0^1 [\nu_t] dt
\]

where \([\nu_t] \in H^1(F_0; \mathbb{R})\) is the cohomology class of the closed form \(\nu_t \). Though \(\text{Flux}(f) \), as defined by the above formula, is independent of the choice of the path \(f_t \) up to homotopy, it may depend on the homotopy class of this path. Note, however, that when the genus of \(F_0 \) is \(> 1 \) then \(D_0 \) is contractible, and hence \(\text{Flux}(f) \) is well defined as an element of \(H^1(F_0; \mathbb{R}) \). If \(F_0 \) is the torus then \(\text{Flux}(f) \) is defined only modulo the total area of the torus, and hence it can be viewed as an element of \(H^1(F_0; \mathbb{R}/\mathbb{Z}) \). According to [5],

\[
D_H = \text{KerFlux};
\]

i.e. two diomorphisms \(f; g \in D \) are Hamiltonian isotopic if and only if \(\text{Flux}(f - g^{-1}) = 0 \).

Therefore, Proposition 3.3 is equivalent to

Lemma 3.4 Suppose \((V; \nu)\) is a symplectic fibration over \(S^1 \) and \((W; \Omega)\) is a symplectic Lefschetz fibration over \(D^2 \) such that \(\partial(W; \Omega) = (V; \nu) \) and \(H_1(W) = 0 \). Then for any a 2 \(H^1(F_0; \mathbb{R}) \) (or \(H^1(F_0; \mathbb{R}/\mathbb{Z}) \) if \(F_0 \) is the torus) there exists a symplectic form \(\mathfrak{H} \) on \(W \) such that

\[
\text{Flux}(\text{Hol}_{V; \nu}; \text{Hol}_{V; \nu}^{-1}) = a;
\]

where \(\mathfrak{H} = \mathfrak{H}_{V; \nu} \).

\(^4\)This can be verified as follows. Let \(f_t : D_0; t \in [0; 1] \), be any symplectic isotopy connecting \(f_0 = f \) and \(f_1 = g \). Denote \(a_t = \text{Flux}(f_t) \) and choose a harmonic (for some metric) 1-form \(\nu_t \) representing \(a_t \in H^1(F_0; \mathbb{R}) \). Set \(t = t_0 \). By assumption we have \(a_0 = 0 \). Let \(\nu_t \) be the time-one map of the symplectic flow generated by the symplectic vector field \(\nu_t \) (dual to \(t \). Then for all \(t \in [0; 1] \) we have \(\text{Flux}(t^{-1} f_t) = a_0 \), and hence \(t^{-1} f_t \) is a Hamiltonian isotopy between \(f \) and \(g \).
Proof Let us recall that given an embedded path from a critical value \(p \) of the Lefschetz fibration to a boundary point \(q \) there exists a Lagrangian disc, called thimble, which projects to the path and whose boundary \(F_q = \Omega^{-1}(q) \) is a vanishing cycle. This thimble is formed by leaves of the characteristic foliation of the form \(\Omega j^{-1}(t) \) emanating from the corresponding critical point. Let us choose disjoint embedded paths \(1; \ldots; N \) from all critical values of the Lefschetz fibration to points inside the arc \(l = [0, 1/2] \). Let \(i = i \) and \(\gamma_i = \gamma_i, i = 1; \ldots; N \), be the corresponding thimbles and vanishing cycles. Using characteristics of \(\Omega \) as horizontal lines we can trivialize the fibration \(V_i = \Omega^{-1}(l) \). Note that the inclusion \(H_1(F_0) \to H_1(W) \) is surjective, and the kernel of this map is generated by the vanishing cycles (independently of paths along which they are transported to \(F_0 \) from a critical point). By the assumption, we have \(H_1(W) = 0 \) and hence the projections of \(\gamma_i \) to \(F_0 \) generate \(H_1(F_0) \). Then the cohomology classes \(\partial_{\gamma_i} \in H_1(F_0), i = 1; \ldots; N \), Poincare dual to \(\gamma_i \) generate \(H_1(F_0) \). In particular, we can write

\[
\alpha = \sum_{i=1}^N a_i \partial_{\gamma_i}.
\]

Let us recall that there exists a neighborhood \(U_i \) of \(i \) symplectomorphic to a disc bundle in \(T(\gamma_i) \). Let \((q_1; q_2; p_1; p_2) \) be the canonical coordinates in \(T(\gamma_i) \) such that

\[
\Omega j^{-1} = dp_1 \wedge dq_1 + dp_2 \wedge dq_2; \quad f p_1 = p_2 = 0 \tag{2}
\]

and \(U_i = \{(j p j)^2 = p_1^2 + p_2^2 < 2g \} \). Let \(\in : [0, \pi) \to R \) be a non-negative function constant near 0 and equal to 0 near \(\pi \) and such that

\[
(j p j) dp_1 dp_2 = 1;
\]

Consider a supported in \(U_i \) closed 2-form

\[
\Omega = \Omega + \sum_{i=1}^N a_i \partial_{\gamma_i} \tag{3}
\]

Note that the form

\[
\Omega = \Omega + \sum_{i=1}^N a_i \partial_{\gamma_i}
\]

is symplectic, as it follows from the explicit expressions (2) and (3). Note also that the restriction of the form \(\iota \) to the fiber containing \(\gamma_i \) vanishes, and hence for a sufficiently small \(\epsilon > 0 \) the form \(\epsilon = \Omega j_{\gamma_i} \) is positive on the fibers of the
Let us show that $\text{Flux}(\text{Hol}_V; \text{Hol}_{V;1}^{-1}) = a$. For any oriented curve γ in F_0 we have
\[Z_{\gamma} = D_{\gamma} \text{ and } j_{\gamma} = 0;\]
where $\Gamma = \gamma \cdot 1$. Let \mathcal{P} be a cylinder formed by the characteristics of $-\mathcal{E}$ in $V_{1=2}$ originated at $\gamma \cdot 1=2$, and \mathcal{P} the projection of \mathcal{P} to F_0. Note that $\gamma \cdot 1=0$ and that the cylinders \mathcal{P} and \mathcal{P} t together into a cylinder with the same boundary as Γ. Let us orient Γ; \mathcal{P} and \mathcal{P} ins such a way that
\[\partial \Gamma = \gamma \cdot 1=2 - \gamma; \partial \mathcal{P} = -\mathcal{E} \cdot \gamma; \partial \mathcal{P} = \gamma \cdot 1=2 - \gamma;\]
where $\mathcal{E} = \mathcal{P} \setminus F_0$. The di eomorphism $\text{Hol}_V; \text{Hol}_{V;1}^{-1}$ coincides with the projection $F_0 ! F_0 \cdot 1=2$ followed by the holonomy along the characteristic foliation of $-\mathcal{E}|_{V_{1=2}}$. Therefore,
\[\text{Flux}(\text{Hol}_V; \text{Hol}_{V;1}^{-1}) = \mathcal{E}|_{V_{1=2}} = a; \quad (4)\]
To finish the proof of Theorem 3.1 it remains to fix the Hamiltonian isotopy class of the holonomy di eomorphism. This can be done using the following standard argument from the theory of symplectic brations.

Lemma 3.5 Given any Hamiltonian di eomorphism $h: F_0 ! F_0$, consider a symplectic bration $(V = F_0 \cdot S^1; !)$ with $\text{Hol}_V; h$. Then there exists a symplectic form Ω on $W = F_0 \cdot D^2$ such that $\partial W; \Omega = (V; !)$.

Proof Let $H_t: F_0 ! R, t 2 R$, be a 2-periodic time-dependant Hamiltonian whose time one map equals h. Suppose that $m < H_t < M$. We can assume that $m > 0$. Consider an embedding $f: F_0 \cdot S^1 ! F_0 \cdot R^2$ given by the formula
\[(x; t) \gamma (x; ') = t; r = \frac{p}{H_t(x)};\]
where $x 2 F_0; t 2 S^1 \cdot R^2$, and $(r;')$ are polar coordinates on R^2. Let $!(0)$ and $\Omega_0 denote the split symplectic form $! + d(r^2 d')$. Then $f^* \Omega_0 = !$. On the other hand, the embedding f extends to an embedding $f: F \cdot D^2 ! F \cdot R^2$, and hence the form $!$ extends to a symplectic form $\Omega = f^* \Omega_0$ on $D^2 \cdot S^1$. □
This finishes the proof of Theorem 3.1.

Before proving Theorem 1.3 let us make a general remark on gluing of symplectic manifolds along their boundaries.

Remark 3.6 Let \((W_1; \Omega_1)\) and \((W_2; \Omega_2)\) be two symplectic manifolds, and \(V_1 \subset \partial W_1\) and \(V_2 \subset \partial W_2\) be components of their boundaries. Suppose we are given an orientation reversing diffeomorphism \(f: V_1 \to -V_2\) such that \(f^* \Omega_2 = \Omega_1\). Then the manifold \(W = W_1 \cup f(V_1) = V_2 \cup W_2\) inherits a canonical, up to a Hamiltonian diffeomorphism, symplectic structure \(\Omega\). Indeed, according to the symplectic neighborhood theorem the restriction \(\Omega_i|_{V_i}\); \(i = 1; 2\), determines \(\Omega_i\) on a neighborhood of \(V_i\) in \(W_i\) uniquely up to a symplectomorphism fixed on \(V_i\).

Proof of Theorem 1.3 Let \((\hat{W}; \Theta)\) be a cobordism between \((-V; !)\) and a symplectic fibration \((V^0; !)\) which is provided by Theorem 1.1, and \((W; \Omega)\) be a symplectic manifold bounded by \((-V^0; !)\) which we constructed in Theorem 3.1. The required cobordism \((W^0; \Omega^0)\) we then obtain by gluing \((\hat{W}; \Theta)\) and \((W; \Omega)\) along their common boundary, see above Remark 3.6. Moreover, note that \(H_1(W^0; \mathbb{Z}) = H_1(W; \mathbb{Z})\). Hence, one can arrange that \(H_1(W^0; \mathbb{Z}) = 0\).

Proof of Corollary 1.4 According to a theorem of Giroux (see [14]), any contact manifold \((V; !)\) admits an open book decomposition. Hence, for any symplectic form which is positive on \(V\) we can use Theorem 1.3 to find a symplectic manifold \((W; \Omega)\) with \(\partial W; \Omega = (-V; !)\). Attaching \((W; \Omega)\) to a non-desirable component (or components) of the boundary of a semi-illing we will transform it to a illing.

An alternative proof of Theorem 3.1

The following lemma of Kotschick and Morita (see [18]) gives an alternative proof of Theorem 3.1.

Lemma 3.7 Let \(D\) be the group of symplectic (i.e. area and orientation preserving) transformations of a closed surface \((F_0; \omega)\) where \(\omega\) is an area form with \(\int_{F_0} \omega = 1\). Then the commutator \([D; D]\) contains the identity component \(D_0\). If the genus of \(F_0\) is \(> 2\) then the group \(D\) is perfect, i.e. \(D = [D; D]\).
A few remarks about symplectic filling

The proof of this lemma is based on Banyaga's theorem [3] which states that $[D_0; D_0] = D_H$, a theorem of Harer (see [17]) that the group

$$H_1(\Gamma_g) = \Gamma_g = \Gamma_g; \Gamma_g;$$

where Γ_g is the mapping class group of the surface of genus g, is trivial if $g > 2$ (and it is finite for $g \geq 2$), and the following formula of Lalonde and Polterovich from [21]. For any symplectomorphism g on D and any f in D_0 we have $[g; f] = gf^{-1} f^{-1} = 2 D_0$ and

$$\text{Flux}([g; f]) = g(\text{Flux}(f)) - \text{Flux}(f):$$

In particular, if the linear operator $g : H^1(F_0; \mathbb{R})$ has no eigenvalues $= 1$ then the formula

$$f \not\in \text{Flux}([g; f])$$

de nes a surjective map of D_0 onto $H^1(F_0; \mathbb{R})$ (or $H^1(F_0; \mathbb{R} = \mathbb{Z})$ if F_0 is the torus). Clearly, there are a lot of di eomorphisms g with this property, and therefore one can represent any Hamiltonian isotopy class from D_0 as a commutator of a fixed g on D and a Hamiltonian di eomorphism.

Lemma 3.7 allows us to extend any symplectic bration over a circle whose fiber has genus 2 to a symplectic bration over a surface with boundary. The minimal genus of this surface is equal $1 + m$, where m is the minimal number of commutators needed to decompose the class of Hol_V in the mapping class group into a product of commutators. This gives an alternative proof of Theorem 3.1 for the case when $\text{genus}(F_0) \geq 2$. The genus restriction is not a serious obstruction for applications. However, it is unclear whether it is possible to improve this construction to accommodate the condition $H_1(W) = 0$.

4 Different flavors of symplectic fillings

We conclude this article by summarizing the known relations between all existing notions of symplectic filling which were introduced in my earlier papers.

A contact manifold $(V; !)$ is called

Weak Weakly symplectically fillable if there exists a symplectic manifold $(W; !)$ with $@W = V$ and with $! j > 0$;

Strong Strongly symplectically fillable if there exists a symplectic manifold $(W; !)$ with $@W = V$ such that $!$ is exact near the boundary and there exists its primitive such that $f j_V = 0g$ and $d j > 0$;
Stein (or Weinstein) fillable if it can be filled by Weinstein symplectic manifold, i.e. an exact symplectic manifold \((W;\omega)\) such that \(\omega\) admits a primitive \(\lambda\) such that the Liouville vector field \(X\) which is \(\omega\)-dual to \(\lambda\) is gradient-like for a Morse function on \(W\) which is constant and attains its maximum value on the boundary.

Stein fillability admits several equivalent reformulations. \((V;\omega)\) is Stein fillable if and only if

(Stein-1) \((V;\omega)\) can be obtained by a sequence of index 1 contact surgeries and index 2 surgeries along Legendrian knots with the \((-1)\) framing with respect to the framing given by the vector field normal to the contact structure;

(Stein-2) \((V;\omega)\) is compatible with an open book decomposition which arises on the boundary of a Lefschetz fibration over a disc such that the holonomy diffeomorphisms around singular fibers are positive Dehn twists;

(Stein-3) \((V;\omega)\) is holomorphically fillable i.e. there exists a complex manifold \(W\) which has \(V\) as its strictly pseudo-convex boundary and is realized as the field of complex tangencies to the boundary.

The equivalence of (Stein-1) and (Stein-2) follows from [9] or [29]. The equivalence between (Stein-2) and (Stein-3) is established in [1] and [24]. The implication (Stein-1) \(\Rightarrow\) (Stein-4) is established in [9], while the opposite implication follows from [4].

Clearly,

\[\text{(Stein) } \Rightarrow \text{(Strong) } \Rightarrow \text{(Weak)};\]

and all these notions imply the tightness, see [7] and [16]. As it is shown in this paper the notion of (weak/strong) semi-fillability introduced in [10] is equivalent to (weak/strong) fillability, and hence from now on it should disappear.

Here is a summary of what is known about the relation between three above notions of fillability and the notion of tightness.

Tightness does not imply weak fillability. Such an example was first constructed by John Etnyre and Ko Honda in [11]. More examples were constructed by Paolo Lisca and Andras Stipsicz in [23].

Weak fillability does not imply strong fillability. For instance, it was shown in [8] that the contact structures \(\omega_n\) on the 3-torus induced from the standard contact structure by a \(n\) sheeted covering are all weakly symplectically fillable, but not strongly fillable if \(n > 1\).
A few remarks about symplectic filling

It is not known whether strong fillability implies Stein fillability. There are, however, examples of strong symplectic fillings which are not Stein fillings. The first example of this kind is due to Dusa McDuff from [25] who constructed an exact symplectic manifold \((W;!)\) with a disconnected contact boundary \(\@W = V_1 \cup V_2\). This manifold cannot carry a Stein structure because it is not homotopy equivalent to a 2-dimensional cell complex. Let us also point out that for \(\text{dim} V > 3\) the notions of Stein and strong symplectic fillability do not coincide: using a modification of the above McDuff's argument one can construct a strongly fillable contact manifold which cannot be a boundary of a manifold homotopy equivalent to a half-dimensional cell complex.

We will finish this section by showing that one possible notion of fillability which seems to be intermediate between the conditions (Weak) and (Strong) is, in fact, equivalent to strong fillability. The Proposition 4.1 is equivalent to Lemma 3.1 in [6]. It also appeared in [26].

Proposition 4.1 Suppose that a symplectic manifold \((W;!)\) weakly fills a contact manifold \((V;e)\). Then if the form \(!\) is exact near \(\@W = V\) then it can be modified into a symplectic form \(e!\) such that \((W;e!)\) is a strong symplectic filling of \((V;e)\).

Proof Let \(\alpha\) be a contact form which defines \(\frac{\partial}{\partial \alpha}\) such that \(d\alpha = !\). According to Lemma 2.1 for a sufficiently small \(\epsilon > 0\) and an arbitrarily large constant \(C > 0\) there exists a symplectic form \(\Omega\) on \(W\) which coincides with \(!\) outside the \(2\epsilon\)-tubular neighborhood \(U_\epsilon\) of \(\@W\), and is equal to

\[
C d(t^\epsilon) + !; t \in (1 - \epsilon; 1); \]

inside the \(2\epsilon\)-tubular neighborhood \(U_\epsilon\) of \(\@W\). By assumption, \(!\) is exact near the boundary. Hence, we can assume that \(!\) = \(d\alpha\) in \(U_\epsilon\). Let \(t\) be a cut-off function on \(U_\epsilon\) which is equal to 0 near \(\@W\), and is equal to 1 near the other component of the boundary of \(\@U_\epsilon\). Then if \(C\) is large the form

\[
\Omega = C d(t^\epsilon) + d(t)\]

is symplectic, and together with \(\Omega\) on \(W\) \(\cap U_\epsilon\) defines a strong symplectic filling of \((V;e)\).

Remark 4.2 There are known several results concerning so-called concave symplectic fillings (which means \(\@W;!) = (V;e)\)). Paolo Lisca and Gordana Matic proved in [22] that any Stein fillable contact manifolds embeds as a separating hypersurface of contact type into a closed symplectic manifold (in fact a

complex projective manifold). Selman Akbulut and Burak Ozbagci gave in [2] a more constructive proof of this fact. Their construction topologically equivalent to one considered in this paper, though they did not consider the problem of extension of the taming symplectic form. John Etnyre and Ko Honda showed (see [12]) that any contact manifold admits a concave symplectic filling which implies that a symplectic manifold which strongly fills a contact manifold can be realized as a domain in a closed symplectic manifold. A different proof of this result is given by David Gay in [13]. Theorem 1.3 proven in this paper asserts a similar result for weak symplectic fillings. After learning about this article John Etnyre sent me an argument which shows that the weak case can be deduced from the strong one, thus giving an alternative proof of Theorem 1.3. His idea is that by performing a sequence of Legendrian contact surgeries it is possible to transform a contact manifold into a homology sphere and thus, taking into account an argument from Proposition 4.1, to reduce the problem to the case considered in their paper [12] with Ko Honda.

References

A few remarks about symplectic filling

