Dieomorphisms, symplectic forms and Kodaira fibrations

Claude LeBrun

Department of Mathematics, SUNY at Stony Brook
Stony Brook, NY 11794-3651, USA
Email: claude@math.sunysb.edu

Abstract

As was recently pointed out by McMullen and Taubes [7], there are 4-manifolds for which the dihomorphism group does not act transitively on the deformation classes of orientation-compatible symplectic structures. This note points out some other 4-manifolds with this property which arise as the orientation-reversed versions of certain complex surfaces constructed by Kodaira [3]. While this construction is arguably simpler than that of McMullen and Taubes, its simplicity comes at a price: the examples exhibited herein all have large fundamental groups.

AMS Classification numbers

Primary: 53D35
Secondary: 14J29, 57R57

Keywords: Symplectic manifold, complex surface, Seiberg-Witten invariants

Proposed: Ronald Stern
Received: 11 June 2000
Seconded: Yasha Eliashberg, Ronald Fintushel
Accepted: 21 November 2000

Copyright Geometry and Topology
Let M be a smooth, compact oriented 4-manifold. If M admits an orientation-compatible symplectic form, meaning a closed 2-form ω such that ω^2 is an orientation-compatible volume form, one might well ask whether the space of such forms is connected. In fact, it is not difficult to construct examples where the answer is negative. A more subtle question, however, is whether the group of orientation-preserving diffeomorphisms $\text{Diff}(M)$ acts transitively on the set of connected components of the orientation-compatible symplectic structures of M. As was recently pointed out by McMullen and Taubes [7], there are 4-manifolds M for which this subtler question also has a negative answer. The purpose of the present note is to point out that many examples of this interesting phenomenon arise from certain complex surfaces with Kodaira fibrations.

A Kodaira fibration is by definition a holomorphic submersion $f: M \to B$ from a compact complex surface to a compact complex curve, with base B and fiber $F_z = f^{-1}(z)$ both of genus 2. (In C^1 terms, f is thus a locally trivial fiber bundle, but nearby fibers of f may well be non-isomorphic as complex curves.) One says that M is a Kodaira-bered surface if it admits such a fibration f. Now any Kodaira-bered surface M is algebraic, since $K_M \otimes f^*K_B$ is obviously positive for sufficiently large ϵ. On the other hand, recall that a holomorphic map from a curve of lower genus to a curve of higher genus must be constant. If $f: M \to B$ is a Kodaira fibration, it follows that M cannot contain any rational or elliptic curves, since composing f with the inclusion would result in a constant map, and the curve would therefore be contained in a fiber of f; contradiction. The Kodaira-Enriques classification [2] therefore tells us that M is a minimal surface of general type. In particular, the only non-trivial Seiberg-Witten invariants of the underlying oriented 4-manifold M are [8] those associated with the canonical and anti-canonical classes of M. Any orientation-preserving self-diffeomorphism of M must therefore preserve $f^*c_1(M)$.

We have just seen that M is of Kähler type, so let ω denote some Kähler form on M, and observe that ω then of course a symplectic form compatible with the usual 'complex' orientation of M. Let ψ be any area form on B, compatible with its complex orientation, and, for sufficiently small $\epsilon > 0$, consider the closed 2-form

$$\omega' = \omega - \epsilon \psi.$$

\[\]Indeed, by Poincaré duality, a continuous map $h: X \to Y$ of non-zero degree between compact oriented manifolds of the same dimension must induce inclusions $h_*: H^j(Y;\mathbb{R}) \to H^j(X;\mathbb{R})$ for all j. Such a map h therefore cannot exist whenever $b_j(X) < b_j(Y)$ for some j.

Claude LeBrun
Then
\[
\langle \langle f ', i \rangle \rangle \cap = \langle 2(f ') \rangle \cap + \langle i \rangle \cap = \langle \langle \langle \langle \langle \langle h f ', i \rangle \rangle \rangle \rangle \rangle \rangle.
\]
where the inner product is taken with respect to the Kähler metric corresponding to \(\langle \rangle \). Now \(\langle h f ', i \rangle \) is a positive function, and, because \(M \) is compact, therefore has a positive minimum. Thus, for a sufficiently small \(\langle \rangle > 0, \langle \rangle \cap \langle \rangle \) is a volume form compatible with the non-standard orientation of \(M \); or, in other words, \(\langle \rangle \) is a symplectic form for the reverse-oriented 4-manifold \(M \). For related constructions of symplectic structures on fiber-bundles, cf [6].

If follows that \(M \) carries a unique deformation class of almost-complex structures compatible with \(\langle \rangle \). One such almost-complex structure can be constructed by considering the (non-holomorphic) orthogonal decomposition
\[
TM = \ker(f) f (TB)
\]
induced by the given Kähler metric, and then reversing the sign of the complex structure on the 'horizontal' bundle \(f (TB) \). The first Chern class of the resulting almost-complex structure is thus given by
\[
C_1(M; \langle \rangle) = C_1(M) - 4(1 - g)F;
\]
where \(g \) is the genus of \(B \), and where \(F \) now denotes the Poincare dual of a fiber of \(f \). For further discussion, cf [4, 5, 9].

Of course, the product \(B \times F \) of two complex curves of genus 2 is certainly Kodaira fibered, but such a product also admits orientation-reversing diffeomorphisms, and so, in particular, has signature \(\langle \rangle = 0 \). However, as was first observed by Kodaira [3], one can construct examples with \(\langle \rangle > 0 \) by taking branched covers of products; cf [1, 2].

Example Let \(C \) be a compact complex curve of genus 2, and let \(B_1 \) be a curve of genus \(g_2 = 2k - 1 \), obtained as an unbranched double cover of \(C \). Let \(B_1 \). \(B_2 \) be the associated non-trivial deck transformation, which is a free holomorphic involution of \(B_2 \). Let \(p : B_2 \). \(B_1 \) be the unique unbranched cover of order \(2^{4k-2} \) with \(p_1(B_2) = \ker(1(B_1) ! H_1(B_1; \mathbb{Z}_2)) \); thus \(B_2 \) is a complex curve of genus \(g_2 = 2^{4k-2}(k-1) + 1 \). Let \(B_2 \). \(B_1 \) be the union of the graphs of \(p \) and \(p \). Then the homology class of \(\langle \rangle \) is divisible by 2. We may therefore construct a ramified double cover \(M \) of \(B_2 \). \(B_1 \) branched over \(\langle \rangle \). The projection \(f_1 : M \). \(B_1 \) is then a Kodaira fibration, with fiber \(F_1 \) of genus \(2^{4k-2}(4k-3) + 1 \). The projection \(f_2 : M \). \(B_2 \) is also a Kodaira fibration, with fiber \(F_2 \) of genus \(4k - 2 \). The signature of this doubly Kodaira-fibered complex surface is \(\langle (M) \rangle = 2^{4k}(k-1) \).
We now axiomatize those properties of these examples which we will need.

Definition Let M be a complex surface equipped with two Kodaira fibrations $f_j: M \to B_j$, $j = 1, 2$. Let g_j denote the genus of B_j, and suppose that the induced map

$$f_1, f_2: M \to B_1 \cong B_2$$

has degree $r > 0$. We will then say that (f_1, f_2) is a Kodaira double-fibration of M if $(M) \not\equiv 0$ and

$$(g_2 - 1) \not\equiv r(g_1 - 1):$$

In this case, $(M; f_1, f_2)$ will be called a Kodaira doubly-bered surface.

Of course, the last hypothesis depends on the ordering of $(f_1; f_2)$, and is automatically satisfied, for fixed r, if $g_2 \geq g_1$. The latter may always be arranged by simply replacing M and B_2 with suitable covering spaces.

Note that $r = 2$ in the explicit examples given above.

Given a Kodaira doubly-bered surface $(M; f_1, f_2)$, let \overline{M} denote M equipped with the non-standard orientation, and observe that we now have two different symplectic structures on \overline{M} given by

$$!_1 = -f_1', \quad !_2 = -f_2'$$

for any given area forms $'j$ on B_j and any sufficiently small $" > 0$.

Theorem 1 Let $(M; f_1, f_2)$ be any Kodaira doubly-bered complex surface. Then for any self-diffeomorphism $g: M \to M$, the symplectic structures $!_1$ and $!_2$ are deformation inequivalent.

That is, $!_1$, $-!_1$, $!_2$, and $-!_2$ are always in different path components of the closed, non-degenerate 2-forms on \overline{M}. (The fact that $!_1$ and $-!_1$ are deformation inequivalent is due to a general result of Taubes [10], and holds for any symplectic 4-manifold with $b^+ > 1$ and $c_1 \not\equiv 0$.)

Theorem 1 is actually a corollary of the following result:

Theorem 2 Let $(M; f_1, f_2)$ be any Kodaira doubly-bered complex surface. Then for any self-diffeomorphism $g: M \to M$,

$$[c_1(\overline{M}; !_2)] \not\equiv c_1(\overline{M}; !_1):$$

Claude LeBrun
Proof Because \((M) \& 0\), any self-diffeomorphism of \(M\) preserves orientation. Now \(M\) is a minimal complex surface of general type, and hence, for the standard 'complex' orientation of \(M\), the only Seiberg-Witten basic classes \([8]\) are \(c_1(M)\). Thus any self-diffeomorphism of \(M\) satisfies

\[[c_1(M)] = c_1(M)\]

Letting \(F_j\) be the Poincare dual of the fiber of \(f_j\), and letting \(g_j\) denote the genus of \(B_j\), we have

\[c_1(M; !_j) = c_1(M) + 4(g_j - 1)F_j\]

for \(j = 1, 2\). The adjunction formula therefore tells us that

\[[c_1(M; !_j)] [c_1(M)] = (2 + 3)(M) - 2(M) = 3(M) \& 0;\]

where the intersection form is computed with respect to the 'complex' orientation of \(M\).

If we had a diffeomorphism \(M \to M\) with \([c_1(M; !_2)] = c_1(M; !_1)\), this computation would tell us that that

\[[c_1(M)] = c_1(M) = [c_1(M; !_2)] = c_1(M; !_1)\]

and that

\[[c_1(M)] = -c_1(M) = [c_1(M; !_2)] = -c_1(M; !_1);\]

In either case, we would then have

\[4(g_1 - 1)F_1 = c_1(M; !_1) - c_1(M) = [c_1(M; !_2) - c_1(M)] = 4(g_2 - 1) (F_2);\]

On the other hand, \(F_1 \cdot F_2 = r\), so intersecting the previous formula with \(F_2\) yields

\[4(g_1 - 1)r = 4(g_1 - 1)F_1 \cdot F_2 = 4(g_2 - 1)[(F_2) \cdot F_2];\]

and hence

\[(g_2 - 1) \cdot r(g_1 - 1);\]

in contradiction to our hypotheses. The assumption that \([c_1(M; !_1)] = c_1(M; !_2)\) is therefore false, and the claim follows. \(\Box\)

Theorem 1 is now an immediate consequence, since the first Chern class of a symplectic structure is deformation-invariant.

Acknowledgment This work was supported in part by NSF grant DMS-0072591.
References

