Diffeomorphisms, symplectic forms and Kodaira fibrations

Claude LeBrun

Department of Mathematics, SUNY at Stony Brook
Stony Brook, NY 11794-3651, USA
Email: claude@math.sunysb.edu

Abstract

As was recently pointed out by McMullen and Taubes [7], there are 4–manifolds for which the diffeomorphism group does not act transitively on the deformation classes of orientation-compatible symplectic structures. This note points out some other 4–manifolds with this property which arise as the orientation-reversed versions of certain complex surfaces constructed by Kodaira [3]. While this construction is arguably simpler than that of McMullen and Taubes, its simplicity comes at a price: the examples exhibited herein all have large fundamental groups.

AMS Classification numbers Primary: 53D35
Secondary: 14J29, 57R57

Keywords: Symplectic manifold, complex surface, Seiberg–Witten invariants

Proposed: Ronald Stern Received: 11 June 2000
Seconded: Yasha Eliashberg, Ronald Fintushel Accepted: 21 November 2000

Copyright Geometry and Topology
Let M be a smooth, compact oriented 4–manifold. If M admits an orientation-compatible symplectic form, meaning a closed 2–form ω such that $\omega \wedge \omega$ is an orientation-compatible volume form, one might well ask whether the space of such forms is connected. In fact, it is not difficult to construct examples where the answer is negative. A more subtle question, however, is whether the group of orientation-preserving diffeomorphisms $M \to M$ acts transitively on the set of connected components of the orientation-compatible symplectic structures of M. As was recently pointed out by McMullen and Taubes [7], there are 4–manifolds M for which this subtler question also has a negative answer. The purpose of the present note is to point out that many examples of this interesting phenomenon arise from certain complex surfaces with Kodaira fibrations.

A Kodaira fibration is by definition a holomorphic submersion $f: M \to B$ from a compact complex surface to a compact complex curve, with base B and fiber $F_z = f^{-1}(z)$ both of genus ≥ 2. (In C^∞ terms, f is thus a locally trivial fiber bundle, but nearby fibers of f may well be non-isomorphic as complex curves.) One says that M is a Kodaira-fibered surface if it admits such a fibration f. Now any Kodaira-fibered surface M is algebraic, since $K_M \otimes f^*K_B^\ell$ is obviously positive for sufficiently large ℓ. On the other hand, recall that a holomorphic map from a curve of lower genus to a curve of higher genus must be constant.\footnote{Indeed, by Poincaré duality, a continuous map $h: X \to Y$ of non-zero degree between compact oriented manifolds of the same dimension must induce inclusions $h^*: H^j(Y,\mathbb{R}) \hookrightarrow H^j(X,\mathbb{R})$ for all j. Such a map h therefore cannot exist whenever $b_j(X) < b_j(Y)$ for some j.} If $f: M \to B$ is a Kodaira fibration, it follows that M cannot contain any rational or elliptic curves, since composing f with the inclusion would result in a constant map, and the curve would therefore be contained in a fiber of f; contradiction. The Kodaira–Enriques classification [2] therefore tells us that M is a minimal surface of general type. In particular, the only non-trivial Seiberg–Witten invariants of the underlying oriented 4–manifold M are [8] those associated with the canonical and anti-canonical classes of M. Any orientation-preserving self-diffeomorphism of M must therefore preserve $\{\pm c_1(M)\}$.

We have just seen that M is of Kähler type, so let ψ denote some Kähler form on M, and observe that ψ is then of course a symplectic form compatible with the usual ‘complex’ orientation of M. Let φ be any area form on B, compatible with its complex orientation, and, for sufficiently small $\varepsilon > 0$, consider the closed 2–form

$$\omega = \varepsilon \psi - f^* \varphi.$$
Then
\[\omega \land \omega = -2(f^* \varphi) \land \psi + \varepsilon \psi \land \psi = (\varepsilon - \langle f^* \varphi, \psi \rangle) \psi \land \psi, \]
where the inner product is taken with respect to the Kähler metric corresponding to \(\psi \). Now \(\langle f^* \varphi, \psi \rangle \) is a positive function, and, because \(M \) is compact, therefore has a positive minimum. Thus, for a sufficiently small \(\varepsilon > 0 \), \(\omega \land \omega \) is a volume form compatible with the non-standard orientation of \(M \); or, in other words, \(\omega \) is a symplectic form for the reverse-oriented 4-manifold \(\overline{M} \).

For related constructions of symplectic structures on fiber-bundles, cf [6].

If follows that \(\overline{M} \) carries a unique deformation class of almost-complex structures compatible with \(\omega \). One such almost-complex structure can be constructed by considering the (non-holomorphic) orthogonal decomposition
\[TM = \ker(f_*) \oplus f^*(TB) \]
induced by the given Kähler metric, and then reversing the sign of the complex structure on the ‘horizontal’ bundle \(f^*(TB) \). The first Chern class of the resulting almost-complex structure is thus given by
\[c_1(\overline{M}, \omega) = c_1(M) - 4(1 - g)F, \]
where \(g \) is the genus of \(B \), and where \(F \) now denotes the Poincaré dual of a fiber of \(f \). For further discussion, cf [4, 5, 9].

Of course, the product \(B \times F \) of two complex curves of genus \(g \geq 2 \) is certainly Kodaira fibered, but such a product also admits orientation-reversing diffeomorphisms, and so, in particular, has signature \(\tau = 0 \). However, as was first observed by Kodaira [3], one can construct examples with \(\tau > 0 \) by taking branched covers of products; cf [1, 2].

Example Let \(C \) be a compact complex curve of genus \(k \geq 2 \), and let \(B_1 \) be a curve of genus \(g_1 = 2k - 1 \), obtained as an unbranched double cover of \(C \). Let \(\iota: B_1 \rightarrow B_1 \) be the associated non-trivial deck transformation, which is a free holomorphic involution of \(B_1 \). Let \(p: B_2 \rightarrow B_1 \) be the unique unbranched cover of order \(2^{4k-2} \) with \(p_*[\pi_1(B_2)] = \ker[\pi_1(B_1) \rightarrow H_1(B_1, \mathbb{Z})] \); thus \(B_2 \) is a complex curve of genus \(g_2 = 2^{4k-1}(k-1) + 1 \). Let \(\Sigma \subset B_2 \times B_1 \) be the union of the graphs of \(p \) and \(\iota \circ p \). Then the homology class of \(\Sigma \) is divisible by \(2 \). We may therefore construct a ramified double cover \(M \rightarrow B_2 \times B_1 \) branched over \(\Sigma \). The projection \(f_1: M \rightarrow B_1 \) is then a Kodaira fibration, with fiber \(F_1 \) of genus \(2^{4k-2}(4k-3)+1 \). The projection \(f_2: M \rightarrow B_2 \) is also a Kodaira fibration, with fiber \(F_2 \) of genus \(4k - 2 \). The signature of this doubly Kodaira-fibered complex surface is \(\tau(M) = 2^{4k}(k-1) \).

We now axiomatize those properties of these examples which we will need.

Definition Let M be a complex surface equipped with two Kodaira fibrations $f_j: M \to B_j$, $j = 1, 2$. Let g_j denote the genus of B_j, and suppose that the induced map

$$f_1 \times f_2: M \to B_1 \times B_2$$

has degree $r > 0$. We will then say that (f_1, f_2) is a **Kodaira double-fibration** of M if $\tau(M) \neq 0$ and

$$(g_2 - 1) \not| r(g_1 - 1).$$

In this case, (M, f_1, f_2) will be called a **Kodaira doubly-fibered** surface.

Of course, the last hypothesis depends on the ordering of (f_1, f_2), and is automatically satisfied, for fixed r, if $g_2 \gg g_1$. The latter may always be arranged by simply replacing M and B_2 with suitable covering spaces.

Note that $r = 2$ in the explicit examples given above.

Given a Kodaira doubly-fibered surface (M, f_1, f_2), let \overline{M} denote M equipped with the non-standard orientation, and observe that we now have two different symplectic structures on \overline{M} given by

$$\omega_1 = \varepsilon \psi - f_1^* \varphi_1$$

$$\omega_2 = \varepsilon \psi - f_2^* \varphi_2$$

for any given area forms φ_j on B_j and any sufficiently small $\varepsilon > 0$.

Theorem 1 Let (M, f_1, f_2) be any Kodaira doubly-fibered complex surface. Then for any self-diffeomorphism $\Phi: M \to M$, the symplectic structures ω_1 and $\pm \Phi^* \omega_2$ are deformation inequivalent.

That is, $\omega_1, -\omega_1, \Phi^* \omega_2$, and $-\Phi^* \omega_2$ are always in different path components of the closed, non-degenerate 2-forms on \overline{M}. (The fact that ω_1 and $-\omega_1$ are deformation inequivalent is due to a general result of Taubes [10], and holds for any symplectic 4-manifold with $b^+ > 1$ and $c_1 \neq 0$.)

Theorem 1 is actually a corollary of the following result:

Theorem 2 Let (M, f_1, f_2) be any Kodaira doubly-fibered complex surface. Then for any self-diffeomorphism $\Phi: M \to M$,

$$\Phi^*[c_1(\overline{M}, \omega_2)] \neq \pm c_1(\overline{M}, \omega_1).$$
Proof Because $\tau(M) \neq 0$, any self-diffeomorphism of M preserves orientation. Now M is a minimal complex surface of general type, and hence, for the standard ‘complex’ orientation of M, the only Seiberg–Witten basic classes [8] are $\pm c_1(M)$. Thus any self-diffeomorphism Φ of M satisfies

$$\Phi^*[c_1(M)] = \pm c_1(M).$$

Letting F_j be the Poincaré dual of the fiber of f_j, and letting g_j denote the genus of B_j, we have

$$c_1(M, \omega_j) = c_1(M) + 4(g_j - 1)F_j$$

for $j = 1, 2$. The adjunction formula therefore tells us that

$$[c_1(M, \omega_j)] \cdot [c_1(M)] = (2\chi + 3\tau)(M) - 2\chi(M) = 3\tau(M) \neq 0,$$

where the intersection form is computed with respect to the ‘complex’ orientation of M.

If we had a diffeomorphism $\Phi: M \to M$ with $\Phi^*[c_1(M, \omega_2)] = \pm c_1(M, \omega_1)$, this computation would tell us that

$$\Phi^*[c_1(M)] = c_1(M) \implies \Phi^*[c_1(M, \omega_2)] = c_1(M, \omega_1)$$

and that

$$\Phi^*[c_1(M)] = -c_1(M) \implies \Phi^*[c_1(M, \omega_2)] = -c_1(M, \omega_1).$$

In either case, we would then have

$$4(g_1 - 1)F_1 = c_1(M, \omega_1) - c_1(M) = \pm \Phi^*[c_1(M, \omega_2) - c_1(M)] = \pm 4(g_2 - 1)\Phi^*(F_2).$$

On the other hand, $F_1 \cdot F_2 = r$, so intersecting the previous formula with F_2 yields

$$4(g_1 - 1)r = 4(g_1 - 1)F_1 \cdot F_2 = 4(g_2 - 1)[\pm \Phi^*(F_2) \cdot F_2],$$

and hence

$$(g_2 - 1)| r(g_1 - 1),$$

in contradiction to our hypotheses. The assumption that $\Phi^*[c_1(M, \omega_1)] = \pm c_1(M, \omega_2)$ is therefore false, and the claim follows.

Theorem 1 is now an immediate consequence, since the first Chern class of a symplectic structure is deformation-invariant.

Acknowledgment This work was supported in part by NSF grant DMS-0072591.
References

