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Remarks on Some Orientor Equations

1. We first recall fundamental definitions, taken partially from {2]. If (X, o) is -
a metric space then by F(X) we denote the family of all subsets of X and by comp(X)
the set of all compact subsets of X. The set comp(X) is provided with the classical
Hausdorﬁ' metric ¢ defined as follows: if A4, Becomp(X), then ¢(4, B)

= max(max{d(a B): ae A}, max{d(b, A): b« B}) where d(c, C) b inf{g(x, c):
xe€C} for ce X, Cecomp(X). -
» A mapping F: X»comp(X) is said to be upper semi-continuous if for all se-
quences {x7}, {)*} C X, the conditions: xP—x°, yP—)°, x? ¢ F(3*) imply: x° ¢ F(3°);
F is called compact if for every bounded subset 4 of X the closure of the set
U{F(x): x e A} is compact in X, The mapping F is said to be completely continu-
~ous if it is upper semi-continuous and compact.'
If E is a Banach space, then we put

- ¢f(E)= {A eﬂ'(E) A # B, A is closed, 4 is convex} ,
and for A,BeT(E), teR (— the real line):

A+B= {x+y xeA ye€ B}, tA {tx xeA}.

We shall write 4+ x° in the place of A+ {x°}.

If G, F: E->cf(E) then GC F means G(x) C F(x) for x ¢ E, F-+ G is the mapping,
from E into ¢f(E) defined by the formula (F+ G)(x) = F(x)+ G(x). A mapping
F: E—cf(F) is called homogeneous if for every x € E and every ¢ ¢ R, F(tx) = tF(x).

Theorem L-O (Theorem 1 in the paper of A. Lasota and Z. Opial [2]). Let F
~and G be'two completely continuous mappings from E into ¢f(E), such that Fis
homogeneous, GC F+ K, where K: E-—>cf(E) is a constant map defined by
x |={y: |y| <r}, r fixed (|-| the norm in E), and moreover if x ¢ F(x) then x = 0.
_ Under these assumptions there exists x ¢ E such that x e G(x).

Usmg the methods of A. Lasota and Z. Opial presented in [1] and 2], we shalI
‘now give some results concerning a functional-differential equation of the orientor
“type. A similar result is given in [3].




2. If Ais a closed interval in R, then by €7(4) we denote the space of all continu- '
ous mappings u: 4—R* provided with the norm of the uniform convergence:
liull = max{|u(f)|: t €A}, where [4] is the Euclidean norm of u in R".

Let a, b, ¢ be fixed real numbers such that ¢ < a < b. By C we denote the set
of all continuous mappings from [a, b] into [c, b]. For a set AC R® we put iAlr

= sup{|x|: xeA} If F: R"—>cf(R", then we put :

f Flydt = { f w(i)de: w(i) e F(t), we Ll

(see for instance [2]), where L[, . denotes the family of real summable funétions

on [a,b]. - :

. Proposition. Let Fand L be mappings from R* into ¢f(R") and from C*([a, b))
into R" respectively, and let u e C*({a, b]) and r € R be fixed. Then the two follow-

ing conditions are equivalent, under the assumption that u is absolutely continuous:

(a) u'(x) € F(x) for almost every x e [a, b], and Lu=r;
V(b) ‘ u(x) e | f F()ydt+ Lu—r+u(a) .

The proof will be omitted (compare [1, 2]). :
If (X, o) and (7, r) are two metric spaces, then in XX ¥ we shall cons1der the
- metric s as always defined by the formula: :

s((x, ), (@, v))= e(x, +r(»,?).

Hence, in particular, a mapping H: R*X #£— ¢f(R") where A is a family of
compact subsets of R”, is upper semi-continuous if and only if the followmg four
conditions: :

) X*eR, k=0,1,.., ¥>x" as koo,
)] ' y'eR, k=0,1,.., y>)* as k>oo,
with respect to the Hausdorff metric, '

3 - AF et k=0,1, ..., A*>A4" as k— oo ’
@ Ve HOk A%, k=1,2,...,
imply the condition: ,

) y e H(x A% .

Definition 1. (see [1]). We say that a function h [a, b]xR"xﬂ'(R")»cf(R")
fulfils the condition of Carathéodory if and only if:

(i) for almost every x e [a, b], the mapping
(6) : R S(RY) > (u, A) \>h(x, u, 4) < cf(R")

is upper semi-continuous,




(ii)- for every (u A) eR"x 'J‘(R") the mappmg
(@) A [a, b]a x 1—>h(x u, A) € cf(R)

s measurable :
(iii) there exist summable functlons 01, ez, u: [a, b}>R, such that

) : h(x, u, A) < e()jul+ ea(x)iAlJmu(x)
for (x, u, A) {a, b]x R*x §(R").

Definition 2. We say that a mapping Z: C'([a, b])— ¢f(C"[a, b]) fulfils the
hypothesis (#) if the following conditions (9)-(11) hold:

9 o véZ(u)-—-:-v(a):. u(a) ,
(10) _ . Zis completely continuous ,
an ‘ Z is homogeneous .

3, Suppose now, that L: C*%([a, b])>R" is linear and continuous, 1 [a, b]x
X R®x §(R")— ¢f(R") fulfils the Carathéodory condition, Z is a mapping fulfilling (H)
(see Def. 1 and 2), and furthermore, the mapping &: [a, b}->comp([c, b]) = the
set of all compact subsets of [c, b), is such that for every u « C*([c, b]) the set

(12) W= WS, f; )= {weLiy: w(@) e/(x, u(x), D) for x« [a, b]}
is- non-empty. '
Remark 1. Putting *
D(x) = {p(x): pe C, () € [9%), 9*(#)] for te [a 5]},

‘ where ¢° ¢' ¢ C are fixed and such that o%(t) < 9'(t) for te[a, b], we obtain an
example of @: [a, b]—comp([c, b]) for which W(®, f; u) # @ for any u ¢ C"([c, b])
and any f fulﬁlhng the . Carathéodory condltlon

We define now F=F;, 74,1 C'([c, b)—cf(CY[c, B]), as follows:
(19 o F() = {w e CY(c, b]):

10 wlp(%) € f fle, u(@®, u(@(t)))dt—l—L(ui[,,,b]) r+ u(a) for xe [a, b], and

S

2 w'[c a) € Z(ul[c a]+L(u|[ab])— l‘)}

Here w|,,, (and similar symbols) denotes the restriction of w to the set [c, a];
L(ul,z)—r is considered as a constant map: [c, a] 2 x >L(ul,,)—r < R

From the assumption of the convexity of Z and f, it follows, that F(x) is really
‘a convex subset of C7([c, b]) for every u. The closedness of F(u) is also obvmus
Note that if we F(u), then w(a) = u(a)+ L(@lgz)—r.

Lemma. If f,Z,®,L are as above, then F defined by (13) is for every

r eL(C"([a b)) completely continuous.




*

Proof. In-order to prove that F is upper semi-continuous we apply the re-
asoning given in [1], without any essential changes. Let {#?} and {z°}(C C([c, b))
be convergent uniformly to & and z° respectively, ie.: [w?—u[, |z"—z°|—0 as
p—>oo. Let 22e F(w?) for p=1,2,... From the assumptions it directly follows
that 2%, € Z(@% g+ L@, s)—7). Moreover, there exists a sequence {v*},=10...

C(LL, )" such that z°(x)= fw"(t)dt—!—iu"—— r+uf(a) and

() < (3, w00, WBE) for p=1,2, .., xela,b].

Since {u”} converges uniformly to u® in [a, b] and f fulfils the Carathéodory con-
dition, there exists a function v ¢ i, ;, such that |[p?(x){| < »(x) almost everywhere
in [a, b]. By Lemma 2 from the ‘paper [l], there exists a double sequence {4}

(i=1,2,..,j=1i,i+1,..) of real non-negative numbers, such that =1
S je=i . .

=0 for sufficiently large j (depending on i), and the sequence B":jz,:).ﬁv"'
(i=1,2,..) converges almost everywhere in [z,b] to a function ¢°e¢ (Lt )

We have ‘5'(x)‘='z Ay0’(x)—>°(x) .almost everywhere in [a, b], and then
. =1 - . :

| fx Y(t)dt =,Zm' z,-,.fvf(t)dt» f W(f)dt as i—~>oo.
a Jj=1 a a

We have

Zw‘ 'iuzi(x) = j Ay f ’*’j(f)dt + E.o Iy L(W)—r+ fﬂ;ju"(a), and then z°(x)
J=1 a )

j=1 i=1 i=1
— [ o0y de+ L)~ r+u(a) .

 From the uniform convergence of {#} to «°, we obtain w?(®(x))—>u"(@(x)) in the
sense of the Hausdorff metric. In virtue of the upper semi-continuity of f we finally
obtain v° € f{x, ¥%(x), uXP (x))), which means that z° ¢ F(u°). Let now 4 be a bounded
subset of C"([c, a]). Consider the closure of | § {F(u): u € A} and denote it by F[4].
Let {z*} be the sequence of elements belonging to F[A]. Directly from the as-
sumptions we have the compactness of the closure of the set: | J{Z (U)ot L—r):
ue A} (here Lu = L(ul,y)). Denote this closure by Z[4; L,r]. Hence we can
assume that {z*|,,} converges uniformly to a function zeZ[A; L,rl.
There exist sequences {#?} C 4 and {v?} C (L%, ,)", such that 22(x) = [ v()dt-+

L 1@, () € flx, 10(x), @), for x € [a, bl p=1,2, .
From the Carathéodory condition (see (iii)) it follows that .

| [t} < [ @O O+ e@@@)+n@)dt




and then (since A is bounded) the family {f v°(¢)dt} is a family of equi-absolutely
: oL S a ‘ : _ : -
continuous functions. Hence, a subsequence of {2} which converges uniformly
may be chosen, because obviously, convergent sequences of {Lv*} and {u*(a)}
- -may be chosen. Thus, F[4] is compact, and the proof of Lemma is completed.
" 4. Let £, ¢: [a, b]x R*x S (R)—>cf(R") be two mappings fulfilling the Ca-
rathéodory condition, and let Z, @, L be as in the third section. Consider problems
(14) W (x) ef(x, u(x), u(@(x))) almost everywhere in [a, b]
- Ul e Z(W), L(ulgp) =0 ‘

and- :
(19 w'(x)€ g(x, u(x), u(@(x))) almost everywhere in [a; b]
. ’ - u![o,a] € Z(u)a L(ut[u,b]) =r

where r e L(C"([a, b})) is arbitrarily fixed. - '

By a solution of (14) (resp. (15)) we mean any absolutely continuous function
~u: [c, a}>R" fulfilling (14) (resp. (15)). -

Theorem. Suppose the above assumptions on g,f,Z,®,L and suppose
moreover that f is homogeneous with respect to (u, 4) ¢ R*x F(R"), gCf+K
on [a, b]x R*x $(R"), where K: [a,b]x R*x F(R)—>¢f(R") is a map defined by
(x, u, A) ->{y ¢ R*: |y| < ¢(x)}, where ¢: [a, b]—[0, ) is measurable (this means
that putting K(x) = K(x, u, A) we have a measurable function x - |K(x)]). Under
the above assumptions, if the problem (14) has the unique solution u = 0, then
for every reL(C([a, b])), the problem (15) has at least one solution.

Proof. In virtue of Proposition, the proof is reduced to a simple application
of Theorem L-O. It is easy to see that:

1° Fozor CFyz0:+ K

2° Fjo70, is homogeneous,

3 If ueFp 4., then u=0,_ .
4 F,, 70z a0d Fy 7, are completely continuous (see Lemma).

Then a!l assumptions of Theorem L-O, for F= Fyy 4, and G= Fy, 701,
are satisfied, and then the conclusion of this theorem holds, which means that the
assertion of our theorem holds too. The proof is completed.
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