STRONG CONVERGENCE OF A MODIFIED SP-ITERATION PROCESS FOR GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS IN CAT(0) SPACES

DUANGKAMON KITKUAN1,8 AND ANANTACHAI PADCHAROEN1

Email addresses: or$_{ duangkamon@hotmail.com}$ (D. Duangkamon) and apadcharoen@yahoo.com (A. Padcharoen)

Abstract. In this paper, we establish strong convergence theorems of the modified SP-iteration generalized asymptotically quasi-nonexpansive mapping in CAT(0) spaces which extend and improve the recent ones announced by Phuengrattana and Suantai (J. Comput. Appl. Math. 235, 3006-3014, 2011), Sahin and Basarir (Journal of Inequalities and Applications, 2013), Nanjaras and Panyanak (Fixed point Theory and Application, 2010) and some others.

Keywords: generalized asymptotically quasi-nonexpansive mapping, SP-iteration, CAT(0) space.

Mathematics Subject Classification: 47H09, 47H10.

1. Introduction

Let (X, d) be a metric space and $x, y \in X$ with $d(x, y) = l$. A geodesic path from x to y is a isometry $c : [0, l] \rightarrow X$ such that $c(0) = x$ and $c(l) = y$. The image of a geodesic part is called a geodesic segment. A metric space X is a (uniquely) geodesic space, if every two point of X are joined by only one geodesic segment. We will use $[x, y]$ to denote a geodesic segment joining x and y. A subset C of a geodesic space is said to be convex if $[x, y] \in C$ for any $x, y \in C$.

A metric space X is a CAT(0) space if it is geodesically connected and if every geodesic triangle in X is at least as thin as its comparison triangle in the Euclidean plane.

In 1976, Lim [3] introduced the concept of Δ-convergence in a general metric space. In 2008, Kirk and Panyanak [4] specialized Lim’s concept to CAT(0) spaces and proved that it is very similar to weak convergence in the Banach space setting. Every nonexpansive (single-valued) mapping defined on closed bounded convex subset of complete CAT(0) space always has a fixed point. Since then the fixed point theory in CAT(0) space has been rapidly developed and many paper has appeared [8-16].

The Man iteration process is defined by the sequence $\{x_n\}$,

$$\begin{cases} x_1 \in C, \\ x_{n+1} = \alpha_n Tx_n + (1 - \alpha_n) x_n, \quad n \geq 1, \end{cases}$$

(1.1)

where $\{\alpha_n\}$ is a sequence in $(0,1)$.

8 Corresponding author: or$_{ duangkamon@hotmail.com}$ (D. Kitkuan).
The Ishikawa iteration process is defined by the sequence \(\{ x_n \} \),

\[
\begin{align*}
x_1 &\in C, \\
x_{n+1} &= \alpha_n Tx_n + (1 - \alpha_n) x_n, \\
y_n &= \beta_n Tx_n + (1 - \beta_n) x_n, \quad n \geq 1,
\end{align*}
\]

(1.2)

where \(\{ \alpha_n \} \) and \(\{ \beta_n \} \) is a sequence in \((0,1)\).

The Noor iteration process is defined by the sequence \(\{ x_n \} \),

\[
\begin{align*}
x_1 &\in C, \\
z_n &= \gamma_n Tx_n + (1 - \gamma_n) x_n, \\
y_n &= \beta_n Tz_n + (1 - \beta_n) z_n, \\
x_{n+1} &= \alpha_n Ty_n + (1 - \alpha_n) y_n, \quad n \geq 1,
\end{align*}
\]

(1.3)

where \(\{ \alpha_n \}, \{ \beta_n \} \) and \(\{ \gamma_n \} \) is a sequence in \([0,1]\).

Recently, Phuengrattana and Suantai [17] introduced the SP-iteration process is defined by the sequence \(\{ x_n \} \),

\[
\begin{align*}
x_1 &\in C, \\
z_n &= \gamma_n Tx_n + (1 - \gamma_n) x_n, \\
y_n &= \beta_n Tz_n + (1 - \beta_n) z_n, \\
x_{n+1} &= \alpha_n Ty_n + (1 - \alpha_n) y_n, \quad n \geq 1,
\end{align*}
\]

(1.4)

where \(\{ \alpha_n \}, \{ \beta_n \} \) and \(\{ \gamma_n \} \) is a sequence in \([0,1]\).

2. Preliminaries

Complete CAT(0) spaces are often called Hadamard spaces (see [1]). If \(x, y_1, y_2 \) are points of a CAT(0) space and \(y_0 \) is the midpoint of the segment \([y_1, y_2]\), which we will denote by \((y_1 \oplus y_2)/2\), then the CAT(0) inequality implies

\[
d^2 \left(x, \frac{y_1 \oplus y_2}{2} \right) \leq \frac{1}{2} d^2 (x, y_1) + \frac{1}{2} d^2 (x, y_2) - \frac{1}{4} d^2 (y_1, y_2) \quad \text{(2.1)}
\]

The inequality (2.1) is the (CN) inequality of Bruhat and Titz [18].

A geodesic metric spaces is a CAT(0) space if and only if it satisfies the (CN) inequality.

A subset \(K \) of a CAT(0) space \(X \) is convex if for any \(x, y \in K \), we have \([x, y] \subset K\).

Lemma 2.1 ([9]). Let \(X \) be a CAT(0) space.

1. For any \(x, y, z \in X \) and \(t \in [0, 1] \), has

\[
d((1 - t) x \oplus ty, z) \leq (1 - t) d(x, z) + t d(y, z) \quad \text{(2.2)}
\]

2. For any \(x, y, z \in X \) and \(t \in [0, 1] \), has

\[
d^2 \left((1 - t) x \oplus ty, z \right) \leq (1 - t) d^2 (x, z) + t d^2 (y, z) - t(1 - t) d^2 (x, y) \quad \text{(2.3)}
\]

Let \(C \) be nonempty subset of a CAT(0) space. We denote that the set of fixed points of \(T \) by \(F(T) = \{ x \in C : Tx = x \} \).

Definition 2.2 ([21]). A mapping \(T : C \rightarrow C \) called:

1. Nonexpansive if \(d(Tx, Ty) \leq d(x, y) \) for all \(x, y \in C \).
2. Quasi-nonexpansive if \(d(Tx, p) \leq d(x, p) \) for all \(x \in X \) and for all \(p \in F(T) \).
3. Asymptotically nonexpansive if there exists \(k_n \in [0, 1] \) for all \(n \geq 1 \) with \(\lim_{n \to \infty} k_n = 0 \).
0 such that \(d(T^nx, T^ny) \leq (1 + k_n)d(x, y)\) for all \(x, y \in C\).

(4) Asymptotically quasi-nonexpansive if there exists \(k_n \in [0, 1)\) for all \(n \geq 1\) with \(\lim_{n \to \infty} k_n = 0\) such that \(d(T^nx, p) \leq (1 + k_n)d(x, p)\) for all \(x \in C\), for all \(p \in F(T)\).

(5) Generalized asymptotically nonexpansive if \(F(T) \neq \emptyset\) and there exist two sequences of real numbers \(\{u_n\}\) with \(\lim_{n \to \infty} u_n = 0\) such that \(d(T^nx, p) \leq d(x, p) + (1 + u_n)d(x, p)\) for all \(x \in C, p \in F(T)\) and \(n \geq 1\).

(6) Generalized asymptotically quasi-nonexpansive if \(F(T) \neq \emptyset\) and there exist two sequences of real numbers \(\{u_n\}\) and \(\{c_n\}\) with \(\lim_{n \to \infty} u_n = 0 = \lim_{n \to \infty} c_n\) such that \(d(T^nx, p) \leq d(x, p) + (1 + u_n)d(x, p) + c_n\) for all \(x \in C, p \in F(T)\) and \(n \geq 1\).

(7) Uniformly \(L\)-Lipschitzian if for some \(L > 0\), \(d(T^nx, T^ny) \leq Ld(x, y)\) for all \(x, y \in C\) and \(n \geq 1\).

(8) Semi-compact if for any bounded sequence \(\{x_n\}\) in \(C\) with \(d(x_n, T^nx_n) \to 0\) as \(n \to \infty\), there is a convergent subsequence of \(\{x_n\}\).

Let \(\{x_n\}\) be a sequence in a metric space \((X, d)\), and let \(C\) be a subset of \(X\). We say that \(\{x_n\}\), (1) is of monotone type \((A)\) with respect to \(C\) if for each \(p \in C\), there exist two sequences \(\{r_n\}\) and \(\{s_n\}\) of nonnegative real numbers such that \(\sum_{n=1}^{\infty} r_n < \infty\), \(\sum_{n=1}^{\infty} s_n < \infty\) and \(d(x_{n+1}, p) \leq (1 + r_n)d(x_n, p) + s_n\), (2) of monotone type \((B)\) with respect to \(C\) if there exist sequence \(\{r_n\}\) and \(\{s_n\}\) of nonnegative real numbers such that \(d(x_{n+1}, C) \leq (1 + r_n)d(x_n, C) + s_n\).

A mapping \(T : C \to C\) with \(F(T) \neq \emptyset\) is said to satisfy condition \((I)\) if there exists a non-decreasing function \(f : [0, \infty) \to [0, \infty)\) with \(f(0) = 0\) and \(f(r) > 0\) for all \(r \in (0, \infty)\) such that \(d(Tx, Tx) \geq f(d(x, F(T)))\), for all \(x \in C\).

Let \(\{x_n\}\) be a bounded sequence in \(CAT(0)\) space \(X\). For \(x \in X\), set
\[
 r(x, \{x_n\}) = \limsup_{n \to \infty} d(x, x_n). \tag{2.4}
\]

The asymptotic radius \(r(\{x_n\})\) of \(\{x_n\}\) is given by
\[
 r(\{x_n\}) = \inf\{r(x, \{x_n\}) : x \in X\}, \tag{2.5}
\]

and the asymptotic center \(A(\{x_n\})\) of \(\{x_n\}\) is the set
\[
 A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\} \tag{2.6}
\]

Lemma 2.3 ([19]). If \(C\) is a closed convex subset of a complete \(CAT(0)\) space \(X\) and if \(\{x_n\}\) is a bounded sequence in \(C\), then the asymptotic center of \(\{x_n\}\) is in \(C\).

Lemma 2.4 ([19]). Every bounded sequence in a complete \(CAT(0)\) space always has a \(\Delta\)-convergent subsequence.

Lemma 2.5 ([9]). Let \(X\) be a complete \(CAT(0)\) space and \(\{x_n\}\) be a bounded sequence in \(X\) with \(A(\{x_n\}) = \{p\}\) and \(\{u_n\}\) be a subsequence of \(\{x_n\}\) with \(A(\{u_n\}) = \{u\}\) and the sequence \(\{d(x_n, u)\}\) converges, then \(p = u\).

Lemma 2.6 ([20]). Let \(X\) be a \(CAT(0)\) space, \(x \in X\) be given point and \(\{t_n\}\) be a sequence in \([b, c]\) with \(b, c \in (0, 1)\) and \(0 < b(1 - c) \leq \frac{1}{2}\). Let \(\{x_n\}\) and \(\{y_n\}\) be any sequence in \(X\) such that \(\limsup_{n \to \infty} d(x_n, x) \leq r\), \(\limsup_{n \to \infty} d(y_n, x) \leq r\) and \(\lim_{x \to \infty} d((1 - t_n)x_n \oplus t_n y_n, x) = r\), for some \(r \geq 0\). Then \(\lim_{x \to \infty} d(x_n, y_n) = 0\).
Lemma 2.7 ([12]). Let \(\{a_n\}, \{b_n\} \) and \(\{c_n\} \) be three nonnegative sequences satisfying
\[
a_{n+1} \leq (1 + b_n) a_n + c_n, \quad n \geq 1.
\]
If \(\sum_{n=1}^{\infty} c_n < \infty \) and \(\sum_{n=1}^{\infty} b_n < \infty \), then
\[
\begin{align*}
(1) \quad & \lim_{n \to \infty} a_n \text{ exists}, \\
(2) \quad & \text{If } \{a_n\} \text{ has a subsequence which converges strongly to zero, then } \lim_{n \to \infty} a_n = 0.
\end{align*}
\]

3. Main results

In this section, we establish some convergence results of SP-iterations to a fixed point for generalized asymptotically quasi-nonexpansive mappings in the general class of CAT(0) spaces.

Theorem 3.1. Let \((X, d)\) be a complete CAT(0) space and let \(C\) be a nonempty closed convex subset of \(X\). Let \(T : C \to C\) be a generalized asymptotically quasi-nonexpansive mapping with \(\{s_n\}, \{t_n\} \subset [0, \infty)\) such that \(\sum_{n=1}^{\infty} s_n < \infty\) and \(\sum_{n=1}^{\infty} t_n < \infty\). Suppose that \(F(T)\) is closed. For arbitrarily chosen \(x_1 \in C\), the sequence \(\{x_n\}\) be the SP-iteration defined as follows:
\[
\begin{align*}
z_n &= \gamma_n T^m x_n + (1 - \gamma_n) x_n, \\
y_n &= \beta_n T^m z_n + (1 - \beta_n) z_n, \\
x_{n+1} &= \alpha_n T^m y_n + (1 - \alpha_n) y_n,
\end{align*}
\]
(3.1)
where \(\{\gamma_n\}, \{\beta_n\}, \{\alpha_n\}\) are real sequence in \([0, 1]\). Then the sequence \(\{x_n\}\) is of monotone type (A) and monotone type (B) with respect to \(F(T)\). Moreover, \(\{x_n\}\) converges strongly to a fixed point \(q\) of the mapping \(T\) if and only if
\[
\lim_{n \to \infty} \inf_{q \in F(T)} d(x_n, F(T)) = 0,
\]
where \(d(x, F(T)) = \inf_{q \in F(T)} \{d(x, q)\}\).

Proof Following (2.2), Definition 2.2(6) and (3.1), we have
\[
d(z_n, q) = d(\gamma_n T^m x_n + (1 - \gamma_n) x_n, q) \\
\leq \gamma_n d(T^m x_n, q) + (1 - \gamma_n) d(x_n, q) \\
\leq \gamma_n [(1 + s_n) d(x_n, q) + t_n] + (1 - \gamma_n) d(x_n, q) \\
\leq (1 + s_n) [\gamma_n + 1 - \gamma_n] d(x_n, q) + \gamma_n t_n \\
= (1 + s_n) d(x_n, q) + \gamma_n t_n
\]
(3.2)
and
\[
d(y_n, q) = d(\beta_n T^m z_n + (1 - \beta_n) z_n, q) \\
\leq \beta_n d(T^m z_n, q) + (1 - \beta_n) d(z_n, q) \\
\leq \beta_n [(1 + s_n) d(z_n, q) + t_n] + (1 - \beta_n) d(z_n, q) \\
\leq (1 + s_n) [\beta_n + 1 - \beta_n] d(z_n, q) + \beta_n t_n \\
= (1 + s_n) d(z_n, q) + \beta_n t_n.
\]
(3.3)
Substituting (3.2) into (3.3) and combining, we have
\[
d(y_n, q) \leq (1 + s_n) [(1 + s_n) d(x_n, q) + \gamma_n t_n] + \beta_n t_n \\
\leq (1 + s_n)^2 d(x_n, q) + (1 + s_n) \gamma_n t_n + \beta_n t_n,
\]
(3.4)
and
\[
d(x_{n+1}, q) = d(\alpha_n T_n y_n + (1 - \alpha_n) y_n, q)
\leq \alpha_n d(T_n y_n, q) + (1 - \alpha_n) d(y_n, q)
\leq \alpha_n [(1 + s_n) d(y_n, q) + t_n] + (1 - \alpha_n) d(y_n, q)
\leq (1 + s_n) [\alpha_n + 1 - \alpha_n] d(y_n, q) + \alpha_n t_n
= (1 + s_n) d(y_n, q) + \alpha_n t_n.
\]

Substituting (3.4) into (3.5) and combining, we have
\[
d(x_{n+1}, q) \leq (1 + s_n) [(1 + s_n)^2 d(x_n, q) + (1 + s_n) \gamma_n t_n + \beta_n t_n] + \alpha_n t_n
\leq (1 + s_n)^3 d(x_n, q) + (1 + s_n)^2 \gamma_n t_n + \beta_n t_n + \alpha_n t_n
= (1 + \psi_n) d(x_n, q) + \varphi_n
\]
where \(\psi_n = 3s_n + 3s_n^2 + s_n^3\) and \(\varphi_n = (1 + s_n)^2 \gamma_n t_n + \beta_n t_n + \alpha_n t_n\). Since \(\sum_{n=1}^{\infty} s_n < \infty\) and \(\sum_{n=1}^{\infty} t_n < \infty\), it follows that \(\sum_{n=1}^{\infty} \psi_n < \infty\) and \(\sum_{n=1}^{\infty} \varphi_n < \infty\). Now, from (3.6), we get
\[
d(x_{n+1}, q) \leq (1 + \psi_n) d(x_n, q) + \varphi_n,
\]
These inequalities, respectively, we prove that \(\{x_n\}\) is a sequence of monotone type (A) and monotone type (B) with respect to \(F(T)\).

Now, we prove that \(\{x_n\}\) converges strongly to a fixed point of the mapping \(T\) if and only if \(\liminf_{n \to \infty} d(x_n, F(T)) = 0\). If \(x_n \to q \in F(T)\), then \(\lim_{n \to \infty} d(x_n, q) = 0\). Since \(0 \leq (x_n, F(T)) \leq d(x_n, q)\), we have \(\liminf_{n \to \infty} d(x_n, F(T)) = 0\).

Conversely, suppose that \(\liminf_{n \to \infty} d(x_n, F(T)) = 0\). From (3.8) using Lemma 2.7, we have that \(\liminf_{n \to \infty} d(x_n, F(T))\) exists. Further, by hypothesis \(\liminf_{n \to \infty} d(x_n, F(T)) = 0\), we conclude that \(\lim_{n \to \infty} d(x_n, F(T)) = 0\). Next, we show that \(\{x_n\}\) is a Cauchy sequence. Since \(1 + a \leq e^a\) for \(a \geq 0\), hence from (3.7), we have
\[
d(x_{n+m}, q) \leq e^{\psi_{n+m-1}} d(x_{n+m-1}, q) + \varphi_{n+m-1}
\leq e^{\psi_{n+m-1}} d(x_{n+m-1}, q) + \varphi_{n+m-1}
\leq e^{\psi_{n+m-1}} [e^{\psi_{n+m-1}} d(x_{n+m-2}, q) + \varphi_{n+m-2}] + \varphi_{n+m-1}
\leq e^{\sum_{k=n}^{n+m-1} \psi_k} d(x_n, q) + e^{\sum_{k=n}^{n+m-1} \psi_k} \left(\sum_{k=n}^{n+m-1} \varphi_k\right)
\leq Md(x_n, q) + M \left(\sum_{k=n}^{n+m-1} \varphi_k\right),
\]
where \(M = e^{\sum_{k=n}^{n+m-1} \psi_k}\), for \(M > 0\) and for the natural numbers \(m, n\) and \(q \in F(T)\).

Since \(\lim_{n \to \infty} d(x_n, F(T)) = 0\), therefore for any \(\varepsilon > 0\), there exists a natural number \(N_0\)
such that $d(x_n, F(T)) < \frac{\varepsilon}{8M}$ and $\sum_{k=n}^{n+m-1} \varphi_k < \frac{\varepsilon}{4M}$ for all $n > n_0$. And so, we can find $q^* \in F(T)$ such that $d(x_{n_0}, q^*) < \frac{\varepsilon}{4M}$, thus, for all $n > n_0$ and $m \geq 1$, we have

$$d(x_{n+m}, x_n) \leq d(x_{n+m}, q^*) + d(x_n, q^*)$$

$$\leq Md(x_{n_0}, q^*) + M \sum_{k=n_0}^{\infty} \varphi_k + Md(x_{n_0}, q^*) + M \sum_{k=n_0}^{\infty} \varphi_k$$

$$= 2M \left(d(x_{n_0}, q^*) + \sum_{k=n_0}^{\infty} \varphi_k \right) \leq 2M \left(\frac{\varepsilon}{4M} + \frac{\varepsilon}{4M} \right) = \varepsilon$$

(3.10)

This proves that $\{x_n\}$ is a Cauchy sequence. Hence, By the completeness of X, we assume that $\lim_{n \to \infty} x_n = a$. Since C is closed, therefore $a \in C$. Next, we show that $a \in F(T)$. Following two inequalities:

$$d(a, q) \leq d(a, x_n) + d(x_n, q) \quad \forall q \in F(T), \ n \geq 1,$n \geq 1,$

$$d(a, x_n) \leq d(a, q) + d(x_n, q) \quad \forall q \in F(T), \ n \geq 1,$$

(3.11)

give that

$$-d(a, x_n) \leq d(a, F(T)) - d(x_n, F(T)) \leq d(a, x_n), \quad n \geq 1.$$n \geq 1.$$

(3.12)

That is

$$|d(a, F(T)) - d(x_n, F(T))| \leq d(a, x_n), \quad n \geq 1.$$n \geq 1.$$

(3.13)

And $\lim_{n \to \infty} x_n = a$ and $\lim_{n \to \infty} d(x_n, F(T)) = 0$, we conclude that $a \in F(T)$. The proof is completed.

Corollary 3.2. Let (X, d) be a complete CAT(0) space and let C be a nonempty closed convex subset of X. Let $T : C \to C$ be a generalized asymptotically quasi-nonexpansive mapping with $\{s_n\}, \{t_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} s_n < \infty$ and $\sum_{n=1}^{\infty} t_n < \infty$. Suppose that $F(T)$ is closed. For arbitrarily chosen $x_1 \in C$, let $\{x_n\}$ be the SP-iteration sequence defined by (3.1). Then the sequence $\{x_n\}$ converges strongly to a common fixed point q of the mapping T if and only if there exists some subsequence $\{x_{n_j}\}$ of $\{x_n\}$ which converges to $q \in F(T)$.

Corollary 3.3. Let (X, d) be a complete CAT(0) space and let C be a nonempty closed convex subset of X. Let $T : C \to C$ be asymptotically quasi-nonexpansive mapping with $\{s_n\}, \{t_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} s_n < \infty$ and $\sum_{n=1}^{\infty} t_n < \infty$. Suppose that $F(T)$ is closed. For arbitrarily chosen $x_1 \in C$, let $\{x_n\}$ be the SP-iteration sequence defined by (3.1). Then the sequence $\{x_n\}$ is of monotone type (A) and monotone type (B) with respect to $F(T)$. Moreover, $\{x_n\}$ converges strongly to a fixed point q of the mapping T if and only if

$$\lim_{n \to \infty} d(x_n, F(T)) = 0.$$n \to \infty}$

Proof Follows from Theorem 3.1 with $t_n = 0$ for all $n \geq 1$.

Corollary 3.4. Let X be Banach space and let C be a nonempty closed convex subset of X. Let $T : C \to C$ be asymptotically quasi-nonexpansive mapping with $\{s_n\}, \{t_n\} \subset [0, \infty)$ such that $\sum_{n=1}^{\infty} s_n < \infty$ and $\sum_{n=1}^{\infty} t_n < \infty$. Suppose that $F(T)$ is closed. For arbitrarily chosen $x_1 \in C$, let $\{x_n\}$ be the SP-iteration sequence defined by (3.1). Then the sequence $\{x_n\}$ converges strongly to a common fixed point q of the mapping T if and only if

$$\lim_{n \to \infty} d(x_n, F(T)) = 0.$$n \to \infty}
\[0, \infty)\) such that \(\sum_{n=1}^{\infty} s_n < \infty\) and \(\sum_{n=1}^{\infty} t_n < \infty\). Suppose that \(F(T)\) is closed. For arbitrarily chosen \(x_1 \in C\), let \(\{x_n\}\) be the SP-iteration sequence defined by (3.1). Then the sequence \(x_n\) is of monotone type (A) and monotone type (B) with respect to \(F(T)\). Moreover, \(\{x_n\}\) converges strongly to a fixed point \(q\) of the mapping \(T\) if and only if
\[
\liminf_{n \to \infty} d(x_n, F(T)) = 0.
\]

Proof Take \(\lambda x \oplus (1 - \lambda) y = \lambda x + (1 - \lambda) y\) in Corollary 3.2.

Lemma 3.5. Let \((X, d)\) be a complete \(\text{CAT}(0)\) space and let \(C\) be a nonempty closed convex subset of \(X\). Let \(T: C \to C\) be a uniformly continuous generalized asymptotically quasi-nonexpansive mapping with \(\{s_n\}, \{t_n\} \subset [0, \infty)\) such that \(\sum_{n=1}^{\infty} s_n < \infty\) and \(\sum_{n=1}^{\infty} t_n < \infty\). Suppose that \(F(T) \neq \emptyset\). Let \(\{x_n\}\) be the SP-iteration sequence defined by (3.1). Let \(\{\alpha_n\} \subset [\delta, 1 - \delta]\) and \(\{\beta_n\} \subset [\delta, 1 - \delta]\) for some \(\delta \in (0, 1)\). Then

1. \(\lim_{n \to \infty} d(T^n y_n, y_n) = 0\),
2. \(\lim_{n \to \infty} d(T^n z_n, z_n) = 0\),
3. \(\lim_{n \to \infty} d(T^n x_n, x_n) = 0\).

Proof Let \(q \in F(T)\). By Theorem 3.1, we have \(\lim d(x_n, q)\) exists and \(\{x_n\}\) is bounded. Without loss of generality. Let \(\lim_{n \to \infty} d(x_n, q) = b \geq 0\). Taking lim sup on both in inequality (3.4), we have
\[
\lim_{n \to \infty} \sup_{n \to \infty} d(y_n, q) \leq b. \tag{3.14}
\]

Since
\[
d(T^n y_n, q) \leq (1 + s_n) d(y_n, q) + t_n, \tag{3.15}
\]
we have
\[
\lim_{n \to \infty} \sup_{n \to \infty} d(T^n y_n, q) \leq b. \tag{3.16}
\]

On the other hand, since
\[
\lim_{n \to \infty} d(x_{n+1}, q) = \lim_{n \to \infty} d(\alpha_n T^n y_n \oplus (1 - \alpha_n) y_n, q) = b, \tag{3.17}
\]
by Lemma 2.6, we have
\[
\lim_{n \to \infty} d(T^n y_n, y_n) = 0. \tag{3.18}
\]

Hence assertion (1) of the lemma is proved.

In addition, since
\[
d(x_{n+1}, q) \leq d(x_{n+1}, T^n y_n) + d(T^n y_n, q)
\leq (1 - \alpha_n) d(y_n, T^n y_n) + (1 + s_n) d(y_n, q) + t_n, \tag{3.19}
\]
we have \(\liminf_{n \to \infty} d(y_n, q) \geq b\). By combined (3.17) and it yields that \(\lim_{n \to \infty} d(y_n, q) = b\). This implies
\[
\lim_{n \to \infty} d(\beta_n T^n z_n \oplus (1 - \beta_n) z_n, q) = b. \tag{3.20}
\]
Taking lim sup on both sides in inequality (3.3), we have
\[
\lim_{n \to \infty} \sup_{n \to \infty} d(z_n, q) \leq b. \tag{3.21}
\]
Since
\[d(T^n z_n, q) \leq (1 + s_n) d(z_n, q) + t_n, \] (3.22)
we have
\[\limsup_{n \to \infty} d(T^n z_n, q) \leq b. \] (3.23)
By Lemma 2.6, we have
\[\lim_{n \to \infty} d(T^n z_n, z_n) = 0. \] (3.24)
Hence assertion (2) of the lemma is proved.
Thus, by the same method, we can prove that
\[\lim_{n \to \infty} d(T^n x_n, x_n) = 0. \] (3.25)
Hence assertion (3) of the lemma is proved. The proof is completed.

Lemma 3.6. Let \((X, d)\) be a complete CAT(0) space and let \(C\) be a nonempty closed convex subset of \(X\). Let \(T : C \to C\) be a uniformly \(L\)-Lipschitzian generalized asymptotically quasi-nonexpansive mapping with \(\{s_n\}, \{t_n\} \subset [0, \infty)\) such that \(\sum_{n=1}^{\infty} s_n < \infty\) and \(\sum_{n=1}^{\infty} t_n < \infty\). Suppose that \(F(T) \neq \emptyset\). Let \(\{x_n\}\) be the SP-iteration sequence defined by (3.1). Let \(\{\alpha_n\} \subset [\delta, 1 - \delta]\) and \(\{\beta_n\} \subset [\delta, 1 - \delta]\) for some \(\delta \in (0, 1)\). Then \(\lim_{n \to \infty} d(T x_n, x_n) = 0\).

Proof From Lemma 3.5, we have
\[\lim_{n \to \infty} d(T^n z_n, z_n) = 0, \quad \lim_{n \to \infty} d(T^n y_n, y_n) = 0 \quad \text{and} \quad \lim_{n \to \infty} d(T^n x_n, x_n) = 0. \] (3.26)
Hence, we get
\[
d(x_{n+1}, y_n) = d(\alpha_n T^n y_n \oplus (1 - \alpha_n) y_n, y_n) \\
\leq \alpha_n d(T^n y_n, y_n) \to 0 \quad \text{as} \quad n \to \infty.
\] (3.27)
Similary, we have
\[
d(y_n, z_n) \leq \beta_n d(T^n z_n, z_n) \to 0 \quad \text{as} \quad n \to \infty.
\] (3.28)
and
\[
d(z_n, x_n) \leq \alpha_n d(T^n x_n, x_n) \to 0 \quad \text{as} \quad n \to \infty.
\] (3.29)
It follows that
\[
d(x_{n+1}, x_n) \leq d(x_{n+1}, y_n) + d(y_n, z_n) + d(z_n, x_n) \to 0 \quad \text{as} \quad n \to \infty.
\] (3.30)
Since \(T\) is uniformly \(L\)-Lipschitzian, we have
\[
d(T x_n, x_n) \leq d(x_n, x_{n+1}) + d(x_{n+1}, T^{n+1} x_{n+1}) \\
+ d(T^{n+1} x_{n+1}, T^{n+1} x_n) + d(T^{n+1} x_n, T x_n) \\
\leq (1 + L) d(x_{n+1}, x_n) + d(x_{n+1}, T^{n+1} x_{n+1}) + L d(T^n x_n, x_n) \\
\to 0 \quad \text{as} \quad n \to \infty,
\] (3.31)
which implies
\[\lim_{n \to \infty} d(Tx_n, x_n) = 0. \] (3.32)

The proof is completed.

Theorem 3.7. Let \(X, C, T, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{x_n\} \) satisfy the hypotheses of Theorem 3.1. Then the sequence \(\{x_n\} \) \(\Delta \)-converges a fixed point of \(T \).

Proof By Lemma 3.6, we have \(\lim_{n \to \infty} d(Tx_n, x_n) = 0 \). In fact, \(\lim_{n \to \infty} d(x_n, q) \) exists for all \(q \in F(T) \). This implies that sequence \(\{x_n\} \) is bounded. Let \(W_{\Delta}(x_n) = \bigcup A(\{u_n\}) \subseteq F(T) \) and \(W_{\Delta}(x_n) \) consists exactly of one point. In fact, let \(u \in W_{\Delta}(x_n) \), then there exists subsequence \(\{u_n\} \) of \(\{x_n\} \) such that \(\bigcup A(\{u_n\}) = \{u\} \). By Lemma 2.4 and Lemma 2.3, there exists a subsequence \(\{r_n\} \) of \(\{u_n\} \) such that \(\Delta \lim_{n \to \infty} r_n = r \in C \). By Lemma 2.6, \(r \in F(T) \). By Theorem 3.1, \(\lim_{n \to \infty} d(x_n, r) \) exists. Assume that \(u \neq r \). By the uniqueness of asymptotic centers, we have
\[
\limsup_{n \to \infty} d(r_n, r) < \limsup_{n \to \infty} d(r_n, u) \\
\leq \limsup_{n \to \infty} d(u_n, u) \\
\leq \limsup_{n \to \infty} d(u_n, r) \\
= \limsup_{n \to \infty} d(x_n, r) \\
\leq \limsup_{n \to \infty} d(r_n, r)
\] (3.33)

This is a contradiction. Hence \(u = r \in F(T) \). Finally, we prove \(\{x_n\} \) \(\Delta \)-converges a fixed point of \(T \). We claim that \(x = r \). If not, then the existence of \(\lim_{n \to \infty} d(x_n, r) \) and uniqueness of asymptotic centers imply that there exists a contradiction as (3.33) and therefore \(x = r \in F(T) \). Thus, \(W_{\Delta}(x_n) = \{x_n\} \). This shows that \(\{x_n\} \) \(\Delta \)-converges a fixed point of \(T \). The proof is completed.

Theorem 3.8. Let \(X, C, T, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{x_n\} \) satisfy the hypotheses of Theorem 3.1. Assume, in addition that \(T \) is semi-compact. Then the sequence \(\{x_n\} \) converges a strongly to a fixed point of \(T \).

Proof From Theorem 3.1, sequence \(\{x_n\} \) is bounded. By Lemma 3.6, we have \(\lim_{n \to \infty} d(Tx_n, x_n) = 0 \) and by the semi-compactness of \(T \), there exists a subsequence \(\{x_{n_k}\} \subset \{x_n\} \) such that \(\{x_{n_k}\} \) converges strongly to some point \(q \in C \). By uniformly continuity of \(T \), we have
\[d(Tq, q) = \lim_{n \to \infty} d(Tx_{n_k}, x_{n_k}) = 0. \] (3.34)

This implies that \(q \in F(T) \). By Theorem 3.1, \(\lim_{n \to \infty} d(x_n, q) \) exists. Thus, \(q \) is the strong limit of sequence \(\{x_n\} \). The sequence \(\{x_n\} \) converges a strongly to a fixed point \(q \) of \(T \). The proof is completed.

Theorem 3.9. Let \(X, C, T, \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{x_n\} \) satisfy the hypotheses of Theorem 3.1. Assume, in addition that \(T \) satisfies condition (I). Then the sequence \(\{x_n\} \) converges a strongly to a fixed point of \(T \).
Proof From Theorem 3.1, $$\lim_{n \to \infty} d(x_n, F(T))$$ exists. By condition (I) and Lemma 3.6, we have

$$\lim_{n \to \infty} f(d(x_n, F(T))) \leq \lim_{n \to \infty} d(x_n, Tx_n) = 0.$$ \hspace{1cm} (3.35)

This is, $$\lim_{n \to \infty} f(d(x_n, F(T))) = 0.$$ Since $$f$$ is a non-decreasing function satisfying $$f(0) = 0$$ and $$f(r) > 0$$, for all $$r \in (0, \infty)$$, we have $$\lim_{n \to \infty} d(x_n, F(T)) = 0.$$ By Theorem 3.1 implies that sequence $$\{x_n\}$$ converges a strongly to a fixed point $$q$$ of $$T$$. The proof is completed.

Competing interests
The authors declare that they have no competing interests.

Author's contributions
All authors read and approved the final manuscript.

Acknowledgements
The authors thank the referee for comments and suggestions on this manuscript.

References

