CYCLIC HOMOLOGY ARISING FROM ADJUNCTIONS

NIELS KOWALZIG, ULRICH KRÄHMER, AND PAUL SLEVIN

Abstract. Given a monad and a comonad, one obtains a distributive law between them from lifts of one through an adjunction for the other. In particular, this yields for any bialgebroid the Yetter-Drinfel’d distributive law between the comonad given by a module coalgebra and the monad given by a comodule algebra. It is this self-dual setting that reproduces the cyclic homology of associative and of Hopf algebras in the monadic framework of Böhm and Ştefan. In fact, their approach generates two duplicial objects and morphisms between them which are mutual inverses if and only if the duplicial objects are cyclic. A 2-categorical perspective on the process of twisting coefficients is provided and the rôle of the two notions of bimonad studied in the literature is clarified.

1. Introduction

1.1. Background and aim. The Dold-Kan correspondence generalises chain complexes in abelian categories to general simplicial objects, and thus homological algebra to homotopical algebra. The classical homology theories defined by an augmented algebra (such as group, Lie algebra, Hochschild, de Rham and Poisson homology) become expressed as the homology of suitable comonads \(T \), defined via simplicial objects \(C_T(N,M) \) obtained from the bar construction (see, e.g., [Wei94]).

Connes’ cyclic homology created a new paradigm of homology theories defined in terms of mixed complexes [Kas87, DK85]. The homotopical counterparts are cyclic [Con83] or more generally duplicial objects [DK85, DK87], and Böhm and Ştefan [BS08] showed how \(C_T(N,M) \) becomes duplicial in the presence of a second comonad \(S \) compatible in a suitable sense with \(N, M \) and \(T \).

The aim of the present article is to study how the cyclic homology of associative algebras and of Hopf algebras in the original sense of Connes and Moscovici [CM98] fits into this monadic formalism, extending the construction from [KKT11], and to clarify the rôle of different notions of bimonad in this generalisation.

1.2. Distributive laws arising from adjunctions. Inspired by [MW14, AC12] we begin by describing the relation of distributive laws between (co)monads and of lifts of

N.K. acknowledges support by UniNA and Compagnia di San Paolo in the framework of the program STAR 2013, U.K. by the EPSRC grant EP/J012718/1 and the Polish Government Grant 2012/06/M/ST1/00169, and P.S. by an EPSRC DTA. We would like to thank Gabriella Böhm, Steve Lack, Tom Leinster, Danny Stevenson, and the referee for helpful suggestions and discussions.

Received by the editors 2015-06-15 and, in revised form, 2015-7-31.
Transmitted by Ross Street. Published on 2015-08-04.
2010 Mathematics Subject Classification: 16T05, 18C15, 18C20, 19D55.
Key words and phrases: cyclic homology, Hopf algebroids, Hopf monads, distributive laws.
one of them through an adjunction for the other. In particular, we have:

1.3. **Theorem.** Let $F \dashv U$ be an adjunction, $\mathcal{B} := (B, \mu, \eta)$, $B = UF$, and $T = (T, \Delta, \epsilon)$, $T = FU$, be the associated (co)monads, and $S = (S, \Delta^S, \epsilon^S)$ and $C = (C, \Delta^C, \epsilon^C)$ be comonads with a lax isomorphism $\Omega: CU \rightarrow US$, $B \xrightarrow{S} B$, $F \xrightarrow{U} U$, $\Lambda: FC \xrightarrow{\Omega} SF$, where η is the unit of B.

If $\Lambda: FC \rightarrow SF$ corresponds under the adjunction to $\Omega F \circ C\eta: C \rightarrow USF$, then the following are (mixed) distributive laws:

$$\theta: BC = UFC \xrightarrow{UA} USF \xrightarrow{\Omega^{-1}E} CUF = CB$$

$$\chi: TS = FUS \xrightarrow{F\Omega^{-1}} FCU \xrightarrow{AU} SFU = ST.$$

See Theorem 2.9 on p. 1072 for a more detailed statement. For Eilenberg-Moore adjunctions ($B = A^E$), such lifts S of a given comonad C correspond bijectively to mixed distributive laws between B and C (a dual statement holds for coKleisli adjunctions $A = B_T$), cf. Section 2.13.

Sections 2–4 contain various technical results that we would like to add to the theory developed in [BS12], while the final two Sections 5 and 6 discuss examples. In particular, we further develop the 2-categorical viewpoint of [BS12], interpreting the passage from mixed distributive laws between B, C to distributive laws between T, S in the case of an Eilenberg-Moore adjunction as the application of a 2-functor (Proposition 2.15). Furthermore, Section 2.17 describes how different lifts S, V of a given functor C are related to each other.

1.4. **Coefficients.** In Section 3, we discuss left and right χ-coalgebras N respectively M that serve as coefficients of cyclic homology.

The structure of right χ-coalgebras is easily described in terms of C-coalgebra structures on UM (Proposition 3.5). In the example from [KK11] associated to a Hopf algebroid H, these are simply right H-modules and left H-comodules, see Section 5.14 below.

A special case is when the C-coalgebra structure on UM arises from an S-coalgebra structure on M. In the Hopf algebroid case, these are given by Hopf modules. We show that in general, such coefficients are homologically trivial (Proposition 4.10) and can be also interpreted as 1-cells from the trivial distributive law (Propositions 3.10 and 3.11). One reason for discussing them is to point out that general χ-coalgebras can not be reinterpreted as 1-cells.

Similarly, T-opcoalgebras yield homologically trivial left χ-coalgebras. In the Hopf algebroid example, we present a construction of homologically non-trivial examples from
Yetter-Drinfel’d modules, where the Yetter-Drinfel’d condition is necessary for the well-definedness of the left χ-coalgebra structure; it does not arise as a condition for the resulting duplicial functor to be cyclic.

1.5. **Duplicial objects.** Section 4 recalls the construction of duplicial objects. We emphasize the self-duality of the situation by defining in fact two duplicial objects $C_{\mathcal{T}}(N, M)$ and $C_{\mathcal{S}}^{op}(N, M)$, arising from bar resolutions using \mathcal{T} respectively \mathcal{S}. There is a canonical pair of morphisms of duplicial objects between these which are mutual inverses if and only if the two objects are cyclic (Proposition 4.8).

Furthermore, we describe in Section 4.11 the process of twisting a pair of coefficients M, N by what we called a factorisation in [KS14]. This is motivated by the example of the twisted cyclic homology of an associative algebra [KMT03] and constitutes our main application of the 2-categorical language.

1.6. **Hopf monads.** One of our motivations in this project is to understand how various notions of bimonads studied in the literature lead to examples of the above theory that generalise known ones arising from bialgebras and bialgebroids.

All give rise to distributive laws, but it seems to us that opmodule adjunctions over opmonoidal adjunctions as studied recently by Aguiar and Chase [AC12] are the underpinning of the cyclic homology theories from noncommutative geometry: such adjunctions are associated to opmonoidal adjunctions

$$
\mathcal{E} \xleftarrow{H} \mathcal{H},
$$

so here \mathcal{H} and \mathcal{E} are monoidal categories, E is a strong monoidal functor and H is an opmonoidal functor, see Section 5.1. In the key example, \mathcal{H} is the category H-Mod of modules over a bialgebroid H and \mathcal{E} is the category of bimodules over the base algebra A of H. In the special case of the cyclic homology of an associative algebra A, we have $\mathcal{H} = \mathcal{E}$ and $H = E = \text{id}$, so this adjunction is irrelevant. Now the actual opmodule adjunctions defining cyclic homology are formed by an \mathcal{H}-module category \mathcal{B} and an \mathcal{E}-module category \mathcal{A}. In the example, one can pick any H-module coalgebra C and any H-comodule algebra B, take \mathcal{B} to be the category B-Mod of B-modules, \mathcal{A} be the category A-Mod of A-modules, and the pair of comonads \mathcal{S}, \mathcal{C} is given by $C \otimes_A -$.

To obtain the cyclic homology of an associative algebra one takes \mathcal{B} to be the category of A-bimodules (or rather right A^e-modules). Another very natural example is given by a quantum homogeneous space [MS99], where $A = k$ is commutative, H is a Hopf algebra, B is a left coideal subalgebra and $C := A/AB^+$ where B^+ is the kernel of the counit of H restricted to B. So here the distributive law arises from the fact that B admits a C-Galois extension to a Hopf algebra H; following, e.g., [MM02] we call (B, C) a Doi-Koppinen datum.

Bimonads in the sense of Mesablishvili and Wisbauer also provide examples of the theory considered. There is no monoidal structure required on the categories involved, but instead we have $B = C$, see Section 6. At the end of the paper we give an example of
such a bimonad which is not related to bialgebroids and noncommutative geometry, but indicates potential applications of cyclic homology in computer science.

2. Distributive laws

2.1. Distributive laws. We assume the reader is familiar with 2-categorical constructions, see, e.g., [KS72, Lei04] for more background. Given a 2-category \mathcal{C}, we denote by \mathcal{C}^* the 2-category obtained by reversing all 2-cells in \mathcal{C}, and by \mathcal{C}° we denote the 2-category obtained by reversing all 1-cells in \mathcal{C}. We write $\text{Cmd}(\mathcal{C})$ to refer to the 2-category $\text{Mnd}(\mathcal{C})$ of comonads in \mathcal{C}, and $\text{End}(\mathcal{C})$ for the 2-category of endo-1-cells in \mathcal{C}, the 1-cells of which are of the same variance as those in $\text{Cmd}(\mathcal{C})$, so that there is a forgetful 2-functor $\text{Cmd}(\mathcal{C}) \rightarrow \text{End}(\mathcal{C})$. See also [Str72] for more background on (co)monads.

2.2. Definition. Let $\mathbb{B} = (B, \mu^B, \eta^B)$ and $\mathbb{A} = (A, \mu^A, \eta^A)$ be monads on categories \mathcal{C} respectively \mathcal{D}, and let $\Sigma: \mathcal{C} \rightarrow \mathcal{D}$ be a functor. A natural transformation $\sigma: \Sigma A \rightarrow \Sigma B$ is called a lax morphism of monads if $\Sigma \mu^A \cdot \sigma \cdot \Sigma \eta^B$ is a 1-cell in $\text{Mnd}(\mathcal{C})$, that is, if the two diagrams

\[
\begin{array}{ccc}
AA\Sigma & \rightarrow & A\Sigma B \\
\downarrow \mu^A \Sigma & & \downarrow \Sigma \mu^B \\
A\Sigma & \rightarrow & \Sigma B
\end{array}
\]

\[
\begin{array}{ccc}
\Sigma \eta^A \Sigma & \rightarrow & \Sigma A \\
\downarrow \Sigma \eta^B & & \downarrow \sigma \\
\Sigma \eta^B B & \rightarrow & \Sigma B
\end{array}
\]

commute. We denote this by $\sigma: \mathbb{A} \Sigma \rightarrow \Sigma \mathbb{B}$.

Analogously, one defines colax morphisms $\sigma: \Sigma \mathbb{A} \rightarrow \mathbb{B} \Sigma$, where $\Sigma: \mathcal{D} \rightarrow \mathcal{C}$ and \mathbb{A}, \mathbb{B} are as before, and (co)lax morphism of comonads. Note that a lax morphism of (co)monads can be equivalently described as a (co)monad in $\text{End}(\mathcal{Cat})$.

2.3. Remark. Note that while a lax morphism of monads is a 1-cell in $\text{Mnd}(\mathcal{Cat})$, a lax morphism of comonads is a 1-cell in $\text{Cmd}(\mathcal{Cat})$. Dually, a colax morphism of monads is a 1-cell in $\text{Mnd}(\mathcal{Cat})$ whilst a colax morphism of comonads is a 1-cell in $\text{Cmd}(\mathcal{Cat})$.

2.4. Definition. A distributive law $\chi: \mathbb{A} \mathbb{B} \rightarrow \mathbb{B} \mathbb{A}$ between monads \mathbb{A}, \mathbb{B} is a natural transformation $\chi: \alpha \rightarrow \beta$ which is both a lax and a colax morphism of monads.

Analogously, one defines distributive laws between comonads and mixed distributive laws [Bur73] between monads and comonads.

2.5. The 2-categories Dist and Mix. Since this will simplify the presentation of some results, we turn comonad and mixed distributive laws into the 0-cells of 2-categories Dist respectively Mix. This closely follows Street [Str72], see also [KS14]:

2.6. Definition. We denote by Dist the 2-category $\text{Cmd}(\mathcal{Cat})^*$ of comonads (with colax morphisms as 1-cells) in the 2-category of comonads (with lax morphisms as 1-cells). Thus explicitly,
1. 0-cells are quadruples \((\mathcal{B}, \chi, T, S)\), where \(\chi : TS \to ST\) is a comonad distributive law on a category \(\mathcal{B}\).

2. 1-cells \((\mathcal{B}, \chi, T, S) \to (\mathcal{D}, \tau, G, C)\) are triples \((\Sigma, \sigma, \gamma)\), where \(\Sigma : \mathcal{B} \to \mathcal{D}\) is a functor, \(\sigma : G\Sigma \to \Sigma T\) is a lax morphism of comonads, and \(\gamma : \Sigma S \to C\Sigma\) is a colax morphism of comonads satisfying the Yang-Baxter equation, i.e.,

\[
\begin{align*}
G\Sigma S & \xrightarrow{\sigma S} \Sigma TS \xrightarrow{\Sigma \chi} \Sigma ST \xrightarrow{\gamma T} C\Sigma T \\
G\gamma & \xrightarrow{\Sigma \gamma} G\Sigma \xrightarrow{\tau \Sigma} CG\Sigma \xrightarrow{C\sigma} C\Sigma
\end{align*}
\]

commutes, and

3. 2-cells \((\Sigma, \sigma, \gamma) \Rightarrow (\Sigma', \sigma', \gamma')\) are natural transformations \(\alpha : \Sigma \to \Sigma'\) for which the diagrams

\[
\begin{align*}
G\Sigma & \xrightarrow{G\alpha} G\Sigma' \\
\Sigma T & \xrightarrow{\alpha T} \Sigma' T
\end{align*}
\]

\[
\begin{align*}
\Sigma S & \xrightarrow{\alpha S} \Sigma' S \\
C\Sigma & \xrightarrow{C\alpha} C\Sigma'
\end{align*}
\]

commute.

In the sequel, we will denote 1-cells diagrammatically as:

\[
\begin{array}{cc}
S & \xrightarrow{\chi} \mathcal{B} \\
\xrightarrow{(\Sigma, \sigma, \gamma)} & \xrightarrow{T} \\
\xrightarrow{G} & \xrightarrow{D} \mathcal{D} \\
\xrightarrow{C} & \xrightarrow{\tau, \gamma} \mathcal{G}
\end{array}
\]

Similarly, we define the 2-category \(\text{Mix} := \text{Mnd} (\text{Cmd} (\text{Cat}))\) of mixed distributive laws.

2.7. Distributive laws arising from adjunctions. The topic of this paper is distributive laws that are compatible in a specific way with an adjunction for one of the involved comonads: let \(\mathcal{B} = (\mathcal{B}, \mu, \eta)\) be a monad on a category \(\mathcal{A}\). Suppose

\[
\begin{array}{ccc}
\mathcal{A} & \xleftarrow{F} & \mathcal{U} & \xrightarrow{U} & \mathcal{B}
\end{array}
\]

is an adjunction for \(\mathcal{B}\), that is, \(\mathcal{B} = UF\), and let \(\mathcal{T} = (T, \Delta, \varepsilon)\) with \(\mathcal{T} := FU\) be the induced comonad on \(\mathcal{B}\).
2.8. Definition. If $S: B \to B$ and $C: A \to A$ are endofunctors for which the diagram

$$
\begin{array}{ccc}
S & \to & B \\
\downarrow V & & \downarrow U \\
C & \to & A
\end{array}
$$

commutes up to a natural isomorphism $\Omega: CU \to US$, then we call C an extension of S and S a lift of C through the adjunction.

In general, any natural transformation $\Omega: CU \to US$ uniquely determines a mate $\Lambda: FC \to SF$ that corresponds to

$$
C \xrightarrow{\eta} CU \xrightarrow{\Omega} US \xrightarrow{\Omega^{-1}} SF
$$

under the adjunction [Lei04]. The following theorem, which closely follows [Lei04, Lemmata 6.1.1 and 6.1.4], constructs a canonical pair of distributive laws from Λ:

2.9. Theorem. Suppose that S, C, and Ω are as in Definition 2.8. Then the natural transformations

$$
\theta: BC = UF \xrightarrow{UA} US \xrightarrow{\Omega^{-1}F} CU = CB
$$

and

$$
\chi: TS = FUS \xrightarrow{F\Omega^{-1}} FU \xrightarrow{\Lambda U} SFU = ST
$$

are lax endomorphisms of the monad B respectively the comonad T. If C and S are parts of comonads $C = (C, \Delta^C, \varepsilon^C)$ respectively $S = (S, \Delta^S, \varepsilon^S)$, and if Ω is a lax morphism of comonads, then θ is a mixed distributive law and χ is a comonad distributive law.

Proof. Both (U, Ω^{-1}) and (F, Λ) are 1-cells in the 2-category $\text{End}($Cat$)$ of endofunctors in Cat. The unit and the counit of the adjunction $F \dashv U$ are 2-cells by construction; hence $(F, \Lambda) \dashv (U, \Omega^{-1})$ is an adjunction defining a monad and a comonad whose underlying 1-cells are (UF, θ) and (FU, χ) respectively (which means that θ and χ are lax endomorphisms of B respectively T). If C and S are parts of comonads C respectively S and Ω is a lax morphism of comonads, then the same argument applies with $\text{End}($Cat$)$ replaced by $\text{Cmd}($Cat$)$, but in this case θ and χ are distributive laws.

2.10. Remark. Note that the lax morphisms θ, χ are unique such that the following diagrams commute respectively:

2.11. Definition. A comonad distributive law χ as in Theorem 2.9 is said to arise from the adjunction $F \dashv U$.

2.12. Example. A trivial example which will nevertheless play a rôle below is the case where $C = B$, $S = T$, and $\Omega = \text{id}$. In this case, χ and θ are given by

$$TT = \text{FU} \xrightarrow{\varepsilon} \text{FU} \xrightarrow{\eta} \text{FU} = TT,$$

$$BB = \text{UF} \xrightarrow{\varepsilon} \text{UF} \xrightarrow{\eta} \text{UF} = BB.$$

2.13. The Eilenberg-Moore and the coKleisli cases. Functors do not necessarily lift respectively extend through an adjunction (for example, the functor on Set which assigns the empty set to each set does not lift to $k\text{-Mod}$), and if they do, they may not do so uniquely. Theorem 2.9 says only that once a lift respectively extension is chosen, there is a unique compatible pair of lax endomorphisms θ and χ.

One extremal situation in which specifying a lax endomorphism χ uniquely determines a lift S of C is when B is the Eilenberg-Moore category A. In this case, we write $\tilde{B} := T$, $\tilde{\beta} := T$ and $\tilde{\theta} := \chi$. The unique lift S is given on objects (X, α) by $S(X, \alpha) = (CX, C\alpha \circ \beta X)$. Using Theorem 2.9 (with $\Omega = \text{id}$), one recovers θ, see, e.g., [App65, Joh75]. In the sequel, we will denote S by C^θ.

Dually, one can take A to be the coKleisli category B in which case a lax endomorphism χ yields an extension C of a functor S. This means that every comonad distributive law and every mixed distributive law arises from an adjunction.

In the remainder of this section, we discuss the functoriality of the above constructions. This hinges on the following remark:

In other words, the inclusion 2-functor $\text{Cmd}(\text{Cat}) \to \text{Mnd}(\text{Cmd}(\text{Cat}))$ has a right 2-adjoint, which is defined by

$$
\begin{array}{ccc}
C & \xrightarrow{\theta} & B \\
\downarrow^{(\Sigma, \sigma, \gamma)} & \Downarrow^{(\Sigma\sigma, \tilde{\gamma})} & \Downarrow^{\tilde{\alpha}} \\
D & \xrightarrow{\tilde{\rho}} & A
\end{array}
$$

Here, $\Sigma\sigma$ is the lifting of the functor Σ via the lax morphism of monads σ. The natural transformation $\gamma: \Sigma C \to D\Sigma$ lifts to a natural transformation $\tilde{\gamma}: \Sigma\sigma C^\theta \to D^\psi\Sigma\sigma$ if and only if the Yang-Baxter equation is satisfied, and $\tilde{\gamma}$ is a colax morphism of comonads if and only if γ is. The natural transformation α lifts to a natural transformation $\tilde{\alpha}: \Sigma\sigma \to \Sigma\sigma\tilde{\rho}$ if and only if $\alpha: (\Sigma, \sigma) \Rightarrow (\Sigma\sigma, \tilde{\rho})$ is a 2-cell in $\text{Mnd}(\text{Cat})$, and $\tilde{\alpha}$ becomes a 2-cell in $\text{Cmd}(\text{Cat})$ if and only if $\alpha: (\Sigma, \gamma) \Rightarrow (\Sigma\sigma, \tilde{\gamma})$ is a 2-cell in $\text{Cmd}(\text{Cat})$.

Having fixed this notation, observe finally that a natural transformation $\sigma: A\Sigma \to \Sigma B$ lifts to a natural transformation $\tilde{\sigma}: \tilde{A}\Sigma\sigma \to \Sigma\sigma\tilde{B}$ if and only if σ is compatible with the multiplication of the monads A and B. In this situation, we have:
2.15. **Proposition.** The assignment

\[
\begin{array}{ccl}
\mathcal{D} & \overset{\psi}{\rightarrow} & \mathcal{A} \\
\Sigma, \sigma, \gamma & \mapsto & (\Sigma, \sigma, \gamma) \\
\mathcal{D} & \overset{\phi}{\rightarrow} & \mathcal{B} \\
\Sigma', \sigma', \gamma' & \mapsto & (\Sigma', \sigma', \gamma')
\end{array}
\]

is a 2-functor \(i : \text{Mix} \rightarrow \text{Dist}\).

Proof. For any 2-category \(\mathcal{C}\) which admits Eilenberg-Moore constructions for monads, there is a 2-functor \(\text{Alg}_{\mathcal{C}} : \text{Mnd}(\mathcal{C}) \rightarrow \text{Cmd}(\mathcal{C})^\text{op}\) (see [Str72, p. 160]). By choosing \(\mathcal{C} = \text{Cmd}(\text{Cat})\) in this construction, we get the above 2-functor.

Analogously, we obtain a 2-functor \(j : \text{Dist} \rightarrow \text{Mix}\) by taking extensions to coKleisli categories. It is those distributive laws in the image of the 2-functor \(i\) that are the main object of study in this paper.

2.16. **Remark.** Let \(F \dashv U\) be an adjunction and let \(S, V : \mathcal{B} \rightarrow \mathcal{B}\) be lifts of \(C : \mathcal{A} \rightarrow \mathcal{A}\) through the adjunction via \(\Omega\) as in Section 2.7. Consider the comparison functor \(U^U\varepsilon : \mathcal{B} \rightarrow \mathcal{A}\). The colax morphism \(\Omega^{-1} : US \rightarrow CU\) lifts to a colax morphism \(\bar{\Omega}^{-1} : U^U\varepsilon S \rightarrow C\theta U^U\varepsilon\). This gives rise to a 1-cell \((U^U\varepsilon, \text{id}, \bar{\Omega}^{-1}) : \chi \rightarrow \bar{\theta}\). Thus the image under \(i\) of a general 1-cell \(\theta \rightarrow \psi\) of mixed distributive laws can be composed with the 1-cell given by the comparison functor to give a new 1-cell \(\chi \rightarrow \bar{\psi}\).

2.17. **Generalising the Galois map.** Theorem 2.9 yields comonad distributive laws from lifts through an adjunction, and different lifts produce different distributive laws. Here we describe how these are related in terms of suitable generalisations of the Galois map from the theory of Hopf algebras (see Section 6.2 below for the example motivating the terminology).

2.18. **Definition.** If \(S, V : \mathcal{B} \rightarrow \mathcal{B}\) are lifts of \(C : \mathcal{A} \rightarrow \mathcal{A}\) through \(F \dashv U\) with isomorphisms \(\Omega : CU \rightarrow US\) and \(\Phi : CU \rightarrow UV\), we define a natural isomorphism

\[
\Gamma_{S,V} : \mathcal{B}(F-, S-) \rightarrow \mathcal{B}(F-, V-)
\]

of functors \(\mathcal{A}^{\text{op}} \times \mathcal{B} \rightarrow \text{Set}\) on components by the composition

\[
\mathcal{B}(FX, SY) \rightarrow \mathcal{A}(X, USY) \rightarrow \mathcal{A}(X, UVY) \rightarrow \mathcal{B}(FX, VY),
\]

where the middle map is induced by \(\Phi_Y \circ \Omega^{-1}_Y : USY \rightarrow UVY\) and the outer ones are induced by the adjunction \(F \dashv U\).

The following properties are easy consequences of the definition:
2.19. Proposition. Let S and V be two lifts of an endofunctor C through an adjunction $F \dashv U$. Then:

1. The inverse of $\Gamma^{S,V}$ is given by $\Gamma^{V,S}$.
2. The natural transformation $\Gamma^{S,V}$ maps a morphism $f : FX \to SY$ to

$$FX \xrightarrow{F\eta_X} FUFX \xrightarrow{FUf} FSY \xrightarrow{F(\Phi_V \circ \Omega_V^{-1})} FUV \xrightarrow{\varepsilon_Y} VY.$$

3. If χ^S and χ^V denote the lax morphisms determined by the two lifts, then

$$\Gamma^{S,V}(\chi^S) = \chi^V.$$

So, in the applications of Theorem 2.9, all distributive laws obtained from different lifts S, V of a given comonad through an adjunction are obtained from each other by application of $\Gamma^{S,V}$.

In particular, we can consider different lifts of B itself: recall the trivial Example 2.12 of Theorem 2.9, where $C = B$ and $S = T$, and let V be any other lift of B through the adjunction. By taking X to be UY for an object Y of B, one obtains a natural transformation $\Gamma^{T,V} : B(T-, T-) \to B(T-, V-)$ that we can evaluate on $\text{id} : TY \to TY$, which produces a natural transformation $\Gamma^{T,V}(\text{id}) : T \to V$.

Adapting [MW10, Definition 1.3], we define:

2.20. Definition. We say that F is V-Galois if

$$\Gamma^{T,V}(\text{id}) : T = FU \xrightarrow{F\eta_U} FUFU = FUT \xrightarrow{F\Phi} FUV \xrightarrow{\varepsilon_V} V$$

is an isomorphism.

The following proposition provides the connection to Hopf algebra theory:

2.21. Proposition. If F is V-Galois and $\theta : BB \to BB$ is the lax morphism arising from the lift V of B, then the natural transformation

$$\beta : BB \xrightarrow{B\theta B} BBB \xrightarrow{\theta_B} BBB \xrightarrow{B\mu} BB$$

is an isomorphism.

Proof. If F is V-Galois, then $U\Gamma^{T,V}(\text{id})F$ is an isomorphism

$$UTF = UFUF \xrightarrow{UF\eta_U} UFUFUF = UFUFUF \xrightarrow{UF\Phi_U} UFUF \xrightarrow{U\varepsilon_V} UVF.$$

Let now $\chi : TV \to VT$ be the lax morphism corresponding to θ as in Theorem 2.9. Inserting $\varepsilon_V = (V\varepsilon) \circ \chi$ and $U\chi \circ UF\Phi = \Phi FU \circ \theta U$ and $B = UF$, the isomorphism becomes

$$UTF = BB \xrightarrow{B\theta B} BBB \xrightarrow{\theta_B} BBB = BUFUF \xrightarrow{\Phi FU} UVFUF \xrightarrow{U\varepsilon_V} UVF.$$

Finally, we have by construction $U\varepsilon F = \mu$, and using the naturality of Φ this gives $UV\varepsilon F \circ \Phi FU = \Phi F \circ B\varepsilon F$. Composing the above isomorphism with $\Phi^{-1}F$ gives β.

\[\square\]
It is this associated map β that is used to distinguish Hopf algebras amongst bialgebras, see Section 6 below.

3. Coefficients

3.1. Coalgebras over comonads. Let $\mathbb{T} = (T, \Delta_T, \varepsilon_T)$ and $\mathbb{S} = (S, \Delta_S, \varepsilon_S)$ be comonads on a category \mathcal{B}, and let $\chi: \mathbb{T}\mathbb{S} \to \mathbb{S}\mathbb{T}$ be a distributive law. First, we recall:

3.2. Definition. A \mathbb{T}-coalgebra is a triple (M, \mathcal{Y}, ∇), where $M: \mathcal{Y} \to \mathcal{B}$ is a functor and $\nabla: M \to TM$ is a natural transformation such that the diagrams

$$
\begin{array}{ccc}
M & \xrightarrow{\nabla} & TM \\
\downarrow & & \downarrow \Delta_T M \\
TM & \xrightarrow{T\nabla} & TTM
\end{array}
\quad
\begin{array}{ccc}
M & \xrightarrow{\nabla} & TM \\
\downarrow & & \downarrow \varepsilon_T M \\
M & \xleftarrow{T\varepsilon_M} & TTM
\end{array}
$$

commute.

Dually, one defines \mathbb{T}-opcoalgebras (N, \mathcal{Z}, ∇) where $\nabla: N \to NT$, as well as algebras and opalgebras involving monads.

3.3. Coalgebras over distributive laws. We now discuss χ-coalgebras, which serve as coefficients in the homological constructions in the next section.

3.4. Definition. A right χ-coalgebra is a triple (M, \mathcal{Y}, ρ), where $M: \mathcal{Y} \to \mathcal{B}$ is a functor and $\rho: TM \to SM$ is a natural transformation such that the diagrams

$$
\begin{array}{ccc}
TM & \xrightarrow{\Delta_T M} & TTM \\
\downarrow & & \downarrow T\rho \\
SM & \xrightarrow{s\rho} & STM
\end{array}
\quad
\begin{array}{ccc}
TM & \xrightarrow{\varepsilon_T M} & M \\
\downarrow & & \downarrow \rho \\
SM & \xleftarrow{s\varepsilon_M} & STM
\end{array}
$$

commute. Dually, we define left χ-coalgebras $(N, \mathcal{Z}, \lambda)$.

The following characterises right χ-coalgebras in the setting of Theorem 2.9.

3.5. Proposition. In the situation of Theorem 2.9, let $M: \mathcal{Y} \to \mathcal{B}$ be a functor.

1. Right χ-coalgebra structures ρ on M correspond to \mathcal{C}-coalgebra structures ∇ on the functor $UM: \mathcal{Y} \to \mathcal{A}$.

2. Let S and V be two lifts of the functor \mathcal{C} through the adjunction, and let χ^S and χ^V denote the comonad distributive laws determined by the lifts S and V respectively. Then $\Gamma^{S,V}$ maps right χ^S-coalgebra structures ρ^S on M bijectively to right χ^V-coalgebra structures ρ^V on M.

Proof. For part (1), right χ-coalgebra structures $\rho: FUM \to SM$ are mapped under the adjunction to $\nabla: UM \to USM \cong CUM$. Part (2) follows immediately since $\Gamma^{S,V}$ is the composition of the adjunction isomorphisms and $\Phi \circ \Omega^{-1}$. \blacksquare
3.6. Remark. The referee of this paper helpfully pointed out that given an adjunction \(V \dashv G \) for the comonad \(S \) and an extension \(Q \) of the comonad \(T \) through the adjunction, left \(\chi \)-coalgebra structures on \(N : B \to Z \) correspond in complete analogy to \(Q \)-opcoalgebra structures on \(NV \).

3.7. Twisting by 1-cells. Here we show how factorisations of distributive laws as considered in [KS14] can be used to obtain new \(\chi \)-coalgebras from old ones. To this end, fix a 1-cell in the 2-category \(\text{Dist} \):

\[
\begin{array}{ccc}
S & \xrightarrow{\chi} & T \\
\downarrow & & \downarrow \\
B & \xrightarrow{\Sigma, \sigma, \gamma} & D \\
\downarrow & & \downarrow \\
C & \xrightarrow{\tau} & G
\end{array}
\]

3.8. Lemma. Let \((M, Y, \rho) \) be a right \(\chi \)-coalgebra. Then \((\Sigma M, Y, \gamma M \circ \Sigma \rho \circ \sigma M) \) is a right \(\tau \)-coalgebra.

Proof. This is proved for the case that \(\chi = \tau \) in [KS14], but the same proof applies to this slightly more general situation. Q.E.D.

Dually, left \(\tau \)-coalgebras \((N, Z, \lambda) \) define left \(\chi \)-coalgebras \((N \Sigma, Z, N \sigma \circ \lambda \Sigma \circ N \gamma) \). The following diagram illustrates the situation:

\[
\begin{array}{ccc}
S & \xrightarrow{\chi} & T \\
\downarrow & & \downarrow \\
B & \xrightarrow{(M, \rho)} & Y \\
\downarrow & & \downarrow \\
Z & \xrightarrow{(N, \lambda)} & D \\
\downarrow & & \downarrow \\
& C & \xrightarrow{\tau} & G
\end{array}
\]

The dotted arrows represent the induced \(\chi \)-coalgebras from Lemma 3.8.

This will be applied in Section 4.11 below in the context of duplicial functors.

3.9. \(\chi \)-Coalgebras from Coalgebras over Comonads. In the remainder of this section, we discuss a class of coefficients that lead to contractible simplicial objects, see Proposition 4.10 below. In the Hopf algebroid setting, these are the Hopf (or entwined) modules as studied in [AC12, BM98].

Note first that \(T \)-coalgebras can be equivalently viewed as 1-cells from respectively to the trivial distributive law:

3.10. Proposition. Given an \(S \)-coalgebra \((M, Y, \nabla^S) \) and a \(T \)-opcoalgebra \((N, Z, \nabla^T) \), there is a pair of 1-cells

\[
\begin{array}{ccc}
S & \xrightarrow{\chi} & T \\
\downarrow & & \downarrow \\
B & \xrightarrow{\Sigma M, \nabla^S} & D \\
\downarrow & & \downarrow \\
\Sigma & \xrightarrow{\nabla^T, Ne^S} & N
\end{array}
\]

and all 1-cells \(\text{id} \to \chi \) respectively \(\chi \to \text{id} \) are of this form.

Furthermore, these 1-cells can also be viewed as \(\chi \)-coalgebras:
3.11. Proposition. Let $\chi : TS \to ST$ be a comonad distributive law. Then:

1. Any S-coalgebra (M, Y, ∇^S) defines a right χ-coalgebra $(M, Y, \varepsilon^T \nabla^S)$.

2. Any T-opcoalgebra (N, Z, ∇^T) defines a left χ-coalgebra $(N, Z, \nabla^T \varepsilon^S)$.

Note, however, that there is no obvious way to associate a 1-cell in Dist to an arbitrary right or left χ-coalgebra.

3.12. Entwined algebras. Finally, we describe how χ-coalgebras as in Proposition 3.11 are in some sense lifts of entwined (also called mixed) algebras; throughout, $\theta : BC \to CB$ is a mixed distributive law between a monad B and a comonad C on a category A.

3.13. Definition. Let $M : Y \to A$ be a functor with a B-algebra structure $\beta : BM \to M$ and a C-coalgebra structure $\nabla : M \to CM$. We say that the quadruple (M, Y, β, ∇) is an entwined algebra with respect to θ if the diagram

$$
\begin{array}{ccc}
BM & \xrightarrow{\beta} & M \\
\downarrow{BV} & & \downarrow{C\beta} \\
BCM & \xrightarrow{\theta M} & CBM
\end{array}
$$

(3.1)

commutes.

Note that an entwined θ-algebra structure on a functor $N : Y \to A$ is equivalent to an entwined $[Y, \theta]$-algebra structure on the functor $1 \to [Y, A]$ which sends the unique object in 1 to N. Without loss of generality, we therefore assume $Y = 1$ and thus consider entwined algebras as objects in A. With the obvious notion of morphism (given by natural transformations compatible with ∇ and β), entwined algebras form a category; this is evidently isomorphic to the category $(A^B)^C$ of C^B-coalgebras. Dually we define an entwined opalgebra structure on a functor $N : A \to Z$ for a distributive law $CB \to BC$.

The following proposition explains the relation between entwined algebras and coalgebras for distributive laws χ arising from an adjunction:

3.14. Proposition. In the situation of Theorem 2.9, let $M : Y \to B$ be a functor and let $\nabla : M \to SM$ be a natural transformation.

1. If ∇ is an S-coalgebra structure, then the structure morphisms

$$
\begin{array}{c}
BUM = UFUM \xrightarrow{U\varepsilon M} UM , \\
UM \xrightarrow{U\nabla} USM \xrightarrow{\varepsilon^{-1}} CUM
\end{array}
$$

turn UM into an entwined algebra with respect to θ.

2. If $B = A^B$, then the converse of (1) holds.
Proof. Throughout this proof, undecorated arrows denote forgetful functors. Let \(\mathbf{1} \) denote the identity monad \((\text{id}, \text{id}, \text{id})\) on \(B \). The triangle identities of the adjunction \(F \dashv U \) imply that \(U_\varepsilon: BU \to \mathbf{1} \) is a lax morphism of monads inducing a lifting
\[
\begin{array}{ccc}
B & \xrightarrow{U_\varepsilon} & A^B \\
\downarrow & & \downarrow \\
B & \xrightarrow{U} & A
\end{array}
\]

The universal property of \(\theta \), cf. Remark \ref{remark2.10} is equivalent to the fact that \(\Omega \) is a 2-cell in \(\text{Mnd}(ext{Cat}) \):
\[
\begin{array}{ccc}
(B, \mathbf{1}) & \xrightarrow{(U, U_\varepsilon)} & (A, B) \\
(S, \text{id}) & \xrightarrow{\Omega} & (C, \theta) \\
(B, \mathbf{1}) & \xrightarrow{(U, U_\varepsilon)} & (A, B)
\end{array}
\]

Therefore, \(\Omega \) lifts to a natural transformation \(\tilde{\Omega} \):
\[
\begin{array}{ccc}
B & \xrightarrow{U_\varepsilon} & A^B \\
S & \xrightarrow{\tilde{\Omega}} & C^\theta \\
B & \xrightarrow{U_\varepsilon} & A^B
\end{array}
\]

Since \(\Omega: C^\varepsilon U \to US \) is a lax morphism of comonads, the lifting \(\tilde{\Omega}: C^\theta U_\varepsilon \to U_\varepsilon S \) is a lax morphism of comonads, thus inducing a lifting
\[
\begin{array}{ccc}
B^\varepsilon & \xrightarrow{(U_\varepsilon)\tilde{\Omega}^{-1}} & (A^B)^{C^\theta} \\
\downarrow & & \downarrow \\
B & \xrightarrow{U_\varepsilon} & A^B
\end{array}
\]

The object map of the functor in the top row of this diagram is the construction in part (1). If \(B = A^B \), then \(U_\varepsilon^\varepsilon = \text{id} \), \(\Omega = \text{id} \) and \(S = C^\theta \), so the top functor in the diagram is just the identity, implying part (2).

Dually, entwined opalgebra structures on a \(B \)-opalgebra \((N, Z, \omega)\) are related to left \(\chi \)-coalgebras if the codomain \(Z \) of \(N \) is a category with coequalisers. First, we define a functor \(N_B: A^B \to Z \) that takes a \(B \)-algebra morphism \(f: (X, \alpha) \to (Y, \beta) \) to \(N_B(f) \) defined using coequalisers:
\[
\begin{array}{ccc}
NBX & \xrightarrow{\omega_X} & NX \\
\downarrow Nf & & \downarrow Nf \\
NBY & \xrightarrow{\omega_Y} & NY \\
\downarrow Nf & & \downarrow Nf \\
N_B(X, \alpha) & \xrightarrow{q_{(X, \alpha)}} & N_B(Y, \beta)
\end{array}
\]
Thus N_B generalises the functor $- \otimes_B N$ defined by a left module N over a ring B on the category of right B-modules.

Suppose that θ is invertible, and that N admits the structure of an entwined θ^{-1}-opalgebra, with coalgebra structure $\nabla: N \to CN$. There are two commutative diagrams:

\[
\begin{array}{c}
NBX \xrightarrow{\omega_X} NX \\
\downarrow \nabla BX \\
NCBX \xrightarrow{\nabla_X} NCBX
\end{array}
\]

\[
\begin{array}{c}
NBX \xrightarrow{N \theta X^{-1}} NCBX \\
\downarrow \nabla BX \\
NCBX \xrightarrow{N \theta_X^{-1}} NCX
\end{array}
\]

Hence, using coequalisers, ∇ extends to a natural transformation $\tilde{\nabla}: N_B \to N_B C^\theta$, and in fact it gives N_B the structure of a C^θ-opcoalgebra. Since $\tilde{\theta}^{-1}: C^\theta B \to \tilde{B} C^\theta$ is a comonad distributive law on A^B, Proposition 3.11 gives examples of homologically trivial left $\tilde{\theta}^{-1}$-coalgebras of the form $(N_B, Z, \tilde{\nabla} \tilde{\varepsilon})$.

4. Duplicial objects

4.1. THE BAR AND OPBAR RESOLUTIONS. Let $T = (T, \Delta, \varepsilon)$ be a comonad on a category B, and let $M: Y \to B$ be a functor.

4.2. DEFINITION. The bar resolution of M is the simplicial functor $B(T, M): Y \to B$ defined by

\[
B(T, M)_n = T^{n+1}M, \quad d_i = T^i \varepsilon T^{n-i}M, \quad s_j = T^j \Delta T^{n-j}M,
\]

where the face and degeneracy maps above are given in degree n. The opbar resolution of M, denoted $B^\text{op}(T, M)$, is the simplicial functor obtained by taking the opsimplicial simplicial functor of $B(T, M)$. Explicitly:

\[
B^\text{op}(T, M)_n = T^{n+1}M, \quad d_i = T^{n-i} \varepsilon T^i M, \quad s_j = T^{n-j} \Delta T^j M.
\]

Given any functor $N: B \to Z$, we compose it with the above simplicial functors to obtain new simplicial functors that we denote by

\[
C_T(N, M) := NB(T, M), \quad C^\text{op}_T(N, M) := NB^\text{op}(T, M).
\]

4.3. Duplicial objects. Duplicial objects were defined by Dwyer and Kan [DK85] as a mild generalisation of Connes’ cyclic objects [Con83]:
4.4. Definition. A duplicial object is a simplicial object \((C, d_i, s_j)\) together with additional morphisms \(t: C_n \to C_n\) satisfying
\[
d_i t = \begin{cases} td_{i-1}, & 1 \leq i \leq n, \\ d_n, & i = 0, \end{cases} \quad s_j t = \begin{cases} ts_{j-1}, & 1 \leq j \leq n, \\ t^2 s_n, & j = 0. \end{cases}
\]
A duplicial object is cyclic if \(T := t^{n+1} = \text{id}\).

Equivalently, a duplicial object is a simplicial object which has in each degree an extra degeneracy \(s_{-1}: C_n \to C_{n+1}\). This corresponds to \(t\) via \(s_{-1} := ts_n, \quad t = d_{n+1}s_{-1}\).

This turns a duplicial object also into a cosimplicial object, and hence a duplicial object \(C\) in an additive category carries a boundary and a coboundary map
\[
b := \sum_{i=0}^{n} (-1)^i d_i, \quad s := \sum_{j=-1}^{n} (-1)^j s_j.
\]

Dwyer and Kan called such chain and cochain complexes duchain complexes and showed that the normalised chain complex functor yields an equivalence between duplicial objects and duchain complexes in an abelian category, thus extending the classical Dold-Kan correspondence between simplicial objects and chain complexes.

If \(f_n \in \mathbb{Z}[x]\) is given by \(1 - x f_n(x) = (1 - x)^{n+1}\) and \(B := sf_n(bs)\), then one has
\[
B^2 = 0, \quad bB + Bb = \text{id} - T,
\]
and in this way cyclic objects give rise to mixed complexes \((C, b, B)\) in the sense of [Kas87] that can be used to define cyclic homology.

4.5. The Böhm-Ștefan construction. Let \((\mathcal{B}, \chi, \mathbb{T}, \mathbb{S})\) be a 0-cell in \(\text{Dist}\), and let \((M, \psi, \rho)\) and \((N, \zeta, \lambda)\) be right and left \(\chi\)-coalgebras respectively. By abuse of notation, we let \(\chi^n\) denote both natural transformations \(T^n \mathbb{S} \to \mathbb{S} T^n\) and \(\mathbb{S} T^n \to T^n \mathbb{S}\) obtained by repeated application of \(\chi\) (up to horizontal composition of identities), where \(\chi^0 = \text{id}\). We furthermore define natural transformations
\[
t^n: C_T(N, M)_n \to C_T(N, M)_n, \quad t^n_S: C_S^\text{op}(N, M)_n \to C_S^\text{op}(N, M)_n
\]
by the diagrams
\[
\begin{array}{c}
\begin{array}{ccc}
NT^n M & \xrightarrow{\chi^n T M} & NST^n M \\
\downarrow \chi^n T^n & & \downarrow \chi^n T^n M \\
NT^{n+1} M & \xrightarrow{t^n} & NT^{n+1} M \\
\end{array} \\
\begin{array}{ccc}
NT^n S M & \xrightarrow{\chi^n S M} & NS^n T M \\
\downarrow \lambda S^n & & \downarrow \lambda S^n T M \\
NS^{n+1} M & \xrightarrow{t^n} & NS^{n+1} M \\
\end{array}
\end{array}
\]

4.6. Theorem. The simplicial functors \(C_T(N, M)\) and \(C_S^\text{op}(N, M)\) become duplicial functors with duplicial operators given by \(t^n\) respectively \(t^n_S\).

Proof. The first operator being duplicial is exactly the case considered in [BS08], and the second follows from a slight modification of their proof.
4.7. Cyclicity. For each \(n \geq 0 \), we define a morphism \(R_n : N^{T^{n+1}M} \rightarrow N^{S^{n+1}M} \) in the following way. For each \(0 \leq i \leq n \), let \(r_{i,n} \) denote the morphism.

\[
N^{S^{i}T^{n+1-i}M} \xrightarrow{N^{S^{i}T^{n+1-i}M}} N^{S^{i}T^{n-i}SM} \xrightarrow{NS^{i}T^{n-i}M} N^{S^{i+1}T^{n-i}M}.
\]

Then set

\[
R_n := r_{n,n} \circ \cdots \circ r_{0,n}.
\]

Similarly, we can define a morphism \(L_n : N^{S^{n+1}M} \rightarrow N^{T^{n+1}M} \) whose definition involves the left \(\chi \)-coalgebra structure \(\lambda \) on \(N \).

4.8. Proposition. The above construction defines two morphisms

\[
C_T(N, M) \xrightarrow{R} C_{S}^{\text{op}}(N, M), \quad C_{S}^{\text{op}}(N, M) \xrightarrow{L} C_T(N, M)
\]

of duplicial functors. Furthermore, \(L \circ R = \text{id} \) if and only if \(C_T(N, M) \) is cyclic, and \(R \circ L = \text{id} \) if and only if \(C_{S}^{\text{op}}(N, M) \) is cyclic.

Proof. This is verified by straightforward computation. However, it is convenient to use a diagrammatic calculus as, e.g., in [BS08], in which natural transformations \(NVM \rightarrow NWM \) are visualised as string diagrams, where \(V \) and \(W \) are words in \(S, T \). For example \(t^T \) will be represented by the diagram

Crossing of strings represents the distributive law \(\chi \) and the bosonic propagators represent the \(\chi \)-coalgebra structures \(\lambda : NS \rightarrow NT \) respectively \(\rho : TM \rightarrow SM \).

For example, the identities \(Rd_i = d_iR \) and \(Rs_j = s_jR \) follow from the commutative diagrams in Definition 3.4, which are represented diagrammatically by

\[
\begin{array}{c}
\begin{array}{c}
T \quad M \\
M \quad T
\end{array}
\end{array}
\]

respectively

\[
\begin{array}{c}
\begin{array}{c}
T \quad M \\
S
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
S \quad M \\
S \quad S \quad M
\end{array}
\end{array}
\]
The relation \(Rt^T = t^S R \) for \(n = 2 \) becomes

\[
\begin{array}{cccccc}
N & T & T & T & T & M \\
| & | & | & | & | & \downarrow \\
N & S & S & S & S & M
\end{array}
\quad =
\quad
\begin{array}{cccccc}
N & T & T & T & T & M \\
| & | & | & | & | & \downarrow \\
N & S & S & S & S & M
\end{array}
\]

which reflects the naturality of \(\lambda, \rho, \) and \(\chi \). Similarly, \(L \) is a morphism of duplicial objects, and one has \((L \circ R)_n = (t^T_n)^{n+1} \) and \((R \circ L)_n = (t^S_n)^{n+1} \).

4.9. Homologically trivial \(\chi \)-coalgebras. As we had announced above, \(\chi \)-coalgebras as in Proposition 3.11 lead to contractible simplicial objects:

4.10. Proposition. Let \(\chi: TS \rightarrow ST \) be a comonad distributive law on a category \(B \), and let \((M, \nu, \rho) \) and \((N, \zeta, \lambda) \) be left and right \(\chi \)-coalgebras respectively. Suppose also that \(\zeta \) is an abelian category. If either of \((N, \zeta, \lambda), \) \((M, \nu, \rho) \) arises as in Proposition 3.11, then the chain complexes associated to both \(C_T(N, M) \) and \(C_{op}(N, M) \) are contractible.

Proof. Assume there is a \(T \)-opcoalgebra structure \(\nabla: N \rightarrow NT \) on \(N \). The morphisms \(\nabla T^n M: N T^n M \rightarrow N T^{n+1} M \) provide a contracting homotopy for the complex associated to \(C_T(N, M) \), and the morphisms

\[
\begin{array}{cccccccc}
NS^{n+1} M & \xrightarrow{\nabla S^{n+1} M} & NTS^{n+1} M & \xrightarrow{N \chi^{n+1} M} & NS^{n+1} TM & \xrightarrow{NS^{n+1} \rho} & NS^{n+2} M \\
& & & & & & \\
\end{array}
\]

provide a contracting homotopy for the complex associated to \(C_{op}(N, M) \). The other case is similar.

4.11. Twisting by 1-cells. Applying the twisting procedure described in Section 3.7, a 1-cell

\[
\begin{array}{cccc}
S & \xrightarrow{\chi} & T \\
\downarrow & \&(\Sigma, \sigma, \gamma) \\
D & \xrightarrow{\tau, \gamma} & G
\end{array}
\]
in the 2-category Dist gives rise to morphisms between duplicial functors of the form considered above: Theorem 4.6 and Lemma 3.8 yield duplicial structures on the simplicial functors

$$C_T(N\Sigma, M), \quad C^\text{op}_S(N\Sigma, M), \quad C_G(N, \Sigma M), \quad C^\text{op}_C(N, \Sigma M),$$

and from Proposition 4.8 we obtain morphisms

$$C_T(N\Sigma, M) \xrightarrow{R^X} C^\text{op}_S(N\Sigma, M), \quad C^\text{op}_S(N\Sigma, M) \xrightarrow{L^X} C_T(N\Sigma, M),$$

$$C_G(N, \Sigma M) \xrightarrow{R^T} C^\text{op}_C(N, \Sigma M), \quad C^\text{op}_C(N, \Sigma M) \xrightarrow{L^T} C_G(N, \Sigma M)$$

duplicial objects which determine the cyclicity of each functor.

Additionally, repeated application of $\sigma: G\Sigma \xrightarrow{\gamma} \Sigma T$ and $\gamma: \Sigma S \xrightarrow{\tau} C\Sigma$ yields two duplicial morphisms

$$C_G(N, \Sigma M) \xrightarrow{\Xi} C_T(N\Sigma, M), \quad C^\text{op}_S(N\Sigma, M) \xrightarrow{\Psi} C^\text{op}_C(N, \Sigma M).$$

Note that for arbitrary functors M and N these are simplicial morphisms which become duplicial morphisms if M and N have coalgebra structures.

5. Hopf monads and Hopf algebroids

5.1. Omodule adjunctions. One example of Theorem 2.9 is provided by an opmonoidal adjunction between monoidal categories:

5.2. Definition. An adjunction

$$\xymatrix{ (\mathcal{E}, \otimes_\mathcal{E}, 1_\mathcal{E}) \ar[r]^-{\Xi} & (\mathcal{H}, \otimes_\mathcal{H}, 1_\mathcal{H}) \ar[l]_-{\Psi} }$$

between monoidal categories is opmonoidal if both H and E are opmonoidal functors and the unit and the counit of the adjunction are opmonoidal natural transformations.

Thus by definition, there are natural transformations

$$\Xi: H(X \otimes_\mathcal{E} Y) \to HX \otimes_\mathcal{H} HY, \quad \Psi: E(K \otimes_\mathcal{H} L) \to EK \otimes_\mathcal{E} EL$$

and morphisms $\Xi_0: H(1_\mathcal{E}) \to 1_\mathcal{H}$ and $\Psi_0: E(1_\mathcal{H}) \to 1_\mathcal{E}$. It follows that Ψ and Ψ_0 are in fact isomorphisms. Hence opmonoidal adjunctions are a special case of doctrinal adjunctions [Kel72]; some authors call opmonoidal adjunctions *comonoidal adjunctions* or *bimonads*. We refer, e.g., to [AC12, BLV11, McC02, MW14, Moe02] for more information.

It follows that

$$H(1_\mathcal{E}) \otimes_\mathcal{H} - \quad E(1_\mathcal{E}) \otimes_\mathcal{E} -$$

form a compatible pair of comonads as in Theorem 2.9 whose comonad structures are induced by the natural coalgebra (comonoid) structures on $1_\mathcal{E}$.

However, the examples we are more interested in are given by opmodule adjunctions (introduced under the name comodule adjunctions in [AC12, Definition 4.1.1]). First, we recall:
5.3. Definition. Let \(H: (\mathcal{E}, \otimes_{\mathcal{E}}, 1_{\mathcal{E}}) \to (\mathcal{H}, \otimes_{\mathcal{H}}, 1_{\mathcal{H}}) \) be an opmonoidal functor and let \((\mathcal{A}, \otimes_{\mathcal{A}})\) and \((\mathcal{B}, \otimes_{\mathcal{B}})\) be \((\mathcal{E})\)-module respectively \((\mathcal{H})\)-module categories. An \(H \)-opmodule is a functor \(F: \mathcal{A} \to \mathcal{B} \) together with a natural transformation \(\Theta: F(Y \otimes_{\mathcal{A}} Z) \to H(Y) \otimes_{\mathcal{B}} FZ \) such that the diagrams

\[
\begin{array}{ccc}
F(X \otimes_{\mathcal{A}} Y \otimes_{\mathcal{A}} Z) & \xrightarrow{\Theta} & H(X \otimes_{\mathcal{E}} Y) \otimes_{\mathcal{B}} FZ \\
\downarrow \Theta & & \downarrow \Xi \otimes_{\mathcal{B}} \text{id} \\
H(X) \otimes_{\mathcal{B}} F(Y \otimes_{\mathcal{A}} Z) & \xrightarrow{\text{id} \otimes_{\mathcal{B}} \Theta} & H(X) \otimes_{\mathcal{B}} H(Y) \otimes_{\mathcal{B}} FZ
\end{array}
\]

and

\[
\begin{array}{ccc}
F(1_{\mathcal{E}} \otimes_{\mathcal{A}} Z) & \xrightarrow{\Theta} & H(1_{\mathcal{E}}) \otimes_{\mathcal{B}} FZ \\
\downarrow \Theta & & \downarrow \Xi \otimes_{\mathcal{B}} \text{id} \\
FZ & \xrightarrow{\Theta} & 1_{\mathcal{H}} \otimes_{\mathcal{B}} FZ
\end{array}
\]

commute, where we have assumed for simplicity that all involved categories are strict.

5.4. Definition. Let \(H \dashv E \) be an opmonoidal adjunction between monoidal categories \((\mathcal{E}, \otimes_{\mathcal{E}}, 1_{\mathcal{E}})\) respectively \((\mathcal{H}, \otimes_{\mathcal{H}}, 1_{\mathcal{H}})\). An opmodule adjunction over \(H \dashv E \) is an adjunction \(F \dashv U \) between an \(\mathcal{E} \)-module category \((\mathcal{A}, \otimes_{\mathcal{A}})\) and an \(\mathcal{H} \)-module category \((\mathcal{B}, \otimes_{\mathcal{B}})\), together with natural transformations

\[
\begin{array}{ccc}
Y \otimes_{\mathcal{A}} Z & \xrightarrow{\eta_{E \otimes_{\mathcal{A}} A} \eta_{U \mathcal{A}}} & E H Y \otimes_{\mathcal{A}} U F Z \\
\eta_{U \mathcal{A}} & & \uparrow \Omega \\
U F(Y \otimes_{\mathcal{A}} Z) & \xrightarrow{U \Theta} & U(H Y \otimes_{\mathcal{B}} F Z)
\end{array}
\]

and

\[
\begin{array}{ccc}
HEL \otimes_{\mathcal{B}} FUM & \xrightarrow{e_{E} \otimes_{\mathcal{B}} e_{F \mathcal{A}}} & L \otimes_{\mathcal{B}} M \\
\uparrow \Theta & & \uparrow e_{F \mathcal{B}} \\
F(E \otimes_{\mathcal{A}} U M) & \xleftarrow{F \Omega} & F U (L \otimes_{\mathcal{B}} M)
\end{array}
\]

commute.

It follows that \(\Omega \) is an isomorphism (see \([\text{AC12}, \text{Proposition 4.1.2}]\) and also \([\text{Kel72}, \text{Theorem 1.4}]\) for a more general theorem in the setting of doctrinal adjunctions).

Now any coalgebra \(C \) in \(\mathcal{H} \) defines a compatible pair of comonads

\[
S = C \otimes_{\mathcal{B}} -, \quad C = E C \otimes_{\mathcal{A}} -
\]

on \(\mathcal{B} \) respectively \(\mathcal{A} \). It is such an instance of Theorem \(2.9 \) that provides the monadic generalisation of the setting from \([\text{KK11}]\), see Section \(5.14 \).
5.5. Bialgebroids and Hopf algebroids. Opmonoidal adjunctions can be seen as categorical generalisations of bialgebras and more generally (left) bialgebroids. We briefly recall the definitions but refer to [Böhm09, DS97, KK11, Szl03] for further details and references.

5.6. Definition. If E is a k-algebra, then an E-ring is a k-algebra map $\eta : E \to H$.

In particular, when $E = A^e := A \otimes_k A^{op}$ is the enveloping algebra of a k-algebra A, then H carries two A-bimodule structures given by

$$a \triangleright h \triangleleft b := \eta(a \otimes_k b)h, \quad a \triangleright h \triangleright b := h\eta(b \otimes_k a).$$

5.7. Definition. [Tak77] A bialgebroid is an A^e-ring $\eta : A^e \to H$ for which Δ_H is a coalgebra in $(A^e\text{-Mod}, \otimes_A, A)$ whose coproduct $\Delta : H \to H \otimes_A H$ satisfies

$$a \triangleright \Delta(h) = \Delta(h) \triangleright a, \quad \Delta(gh) = \Delta(g)\Delta(h),$$

and whose counit $\varepsilon : H \to A$ defines a unital H-action on A given by $h(a) := \varepsilon(a \triangleright h)$.

Finally, by a Hopf algebroid we mean left rather than full Hopf algebroid, so there is in general no antipode [KR13]:

5.8. Definition. [Sch00] A Hopf algebroid is a bialgebroid with bijective Galois map

$$\beta : _H A^{op} H \to H_A , H; \quad g \otimes_A h \mapsto \Delta(g)h.$$

As usual, we abbreviate

$$\Delta(h) =: h_{(1)} \otimes_A h_{(2)}, \quad \beta^{-1}(h \otimes_A 1) =: h_+ \otimes_A h_-.$$ (5.1)

5.9. The opmonoidal adjunction. Every E-ring H defines a forgetful functor

$$E : H\text{-Mod} \to E\text{-Mod}$$

with left adjoint $H = H \otimes_E -$.

In the sequel, we abbreviate $\mathcal{H} := H\text{-Mod}$ and $\mathcal{E} := E\text{-Mod}$. If H is a bialgebroid, then \mathcal{H} is monoidal with tensor product $K \otimes_H L$ of two left H-modules K and L given by the tensor product $K \otimes_A L$ of the underlying A-bimodules whose H-module structure is given by

$$h(k \otimes_H l) := h_{(1)}(k) \otimes_A h_{(2)}(l).$$

So by definition, we have $E(K \otimes_H L) = EK \otimes_A EL$. The opmonoidal structure Ξ on H is defined by the map [BLV11, ACT12]

$$H(X \otimes_A Y) = H \otimes_{A^e} (X \otimes_A Y) \to HX \otimes_H HY = (H \otimes_{A^e} X) \otimes_A (H \otimes_{A^e} Y),$$

$$h \otimes_{A^e} (x \otimes_A y) \mapsto (h_{(1)} \otimes_{A^e} x) \otimes_A (h_{(2)} \otimes_{A^e} y).$$

Schauenburg proved that this establishes a bijective correspondence between bialgebroid structures on H and monoidal structures on $H\text{-Mod}$ [Sch98, Theorem 5.1]:
5.10. **Theorem.** The following data are equivalent for an A^e-ring η: $A^e \to H$:

1. A bialgebroid structure on H.
2. A monoidal structure $(\otimes, 1)$ on $H\text{-Mod}$ such that the adjunction

$$
(A^e\text{-Mod}, \otimes_A, A) \quad \leftrightarrow \quad (H\text{-Mod}, \otimes, 1)
$$

induced by η is opmonoidal.

Consequently, we obtain an opmonoidal monad

$$
EH = \cdot H_\bullet \otimes_{A^e} -
$$
on $E = A^e\text{-Mod}$. This takes the unit object A to the cocentre $H \otimes_A A$ of the A-bimodule $\cdot H_\bullet$, and the comonad $H(1_E) \otimes_E -$ is given by

$$(H \otimes_A A) \otimes_A -,$$

where the A-bimodule structure on the cocentre is given by the actions $\triangleright_\bullet, \triangleleft_\bullet$ on H.

The lift to $\mathcal{H} = H\text{-Mod}$ takes a left H-module L to $(H \otimes_A A) \otimes_A L$ with action

$$
g((h \otimes_A 1) \otimes_A l) = (g_1 h \otimes_A 1) \otimes_A g_2 l,
$$

and the distributive law resulting from Theorem 2.9 is given by

$$
\chi: g \otimes_A ((h \otimes_A 1) \otimes_A l) \mapsto (g_1 h \otimes_A 1) \otimes_A (g_2 \otimes_A l).
$$

That is, it is the map induced by the Yetter-Drinfel’d braiding

$$
H_\bullet \otimes_A H \to H_4 \otimes_A H, \quad g \otimes_A h \mapsto g_1 h \otimes_A g_2.
$$

For $A = k$, that is, when H is a Hopf algebra, and also trivially when $H = A^e$, the monad and the comonad on $A^e\text{-Mod}$ coincide and are also a bimod in the sense of Mesablishvili and Wisbauer, cf. Section 6. An example where the two are different is the Weyl algebra, or more generally, the universal enveloping algebra of a Lie-Rinehart algebra [Hue98]. In these examples, A is commutative but not central in H in general, so $\cdot H_\bullet \otimes_{A^e} -$ is different from $H_4 \otimes_A -$.

5.11. **Doi-Koppinen data.** The instance of Theorem 2.9 that we are most interested in is an opmodule adjunction associated to the following structure:
5.12. Definition. A Doi-Koppinen datum is a triple \((H, C, B)\) of an \(H\)-module coalgebra \(C\) and an \(H\)-comodule algebra \(B\) over a bialgebroid \(H\).

This means that \(C\) is a coalgebra in the monoidal category \(H\text{-Mod}\). Similarly, the category \(H\text{-Comod}\) of left \(H\)-comodules is also monoidal (see, e.g., [Böhm09, Section 3.6]), and this defines the notion of a comodule algebra. Explicitly, \(B\) is an \(A\)-ring \(\eta_B: A \to B\) together with a coassociative coaction \(\delta: B \to H \otimes_A B\), which is counital and an algebra map,

\[
\eta_B(\varepsilon(b))b(0) = b, \quad (bd)(-1) \otimes (bd)(0) = b(-1)d(-1) \otimes b(0)d(0).
\]

Similarly, as in the definition of a bialgebroid itself, for this condition to be well-defined one must also require

\[
b(-1) \otimes_A b(0)\eta_B(a) = a \bullet b(-1) \otimes_A b(0).
\]

The key example that reproduces [KK11] is the following:

5.13. The opmodule adjunction. For any Doi-Koppinen datum \((H, C, B)\), the \(H\) coaction \(\delta\) on \(B\) turns the Eilenberg-Moore adjunction \(A\text{-Mod} \rightleftarrows B\text{-Mod}\) for the monad \(B := B \otimes_A -\) into an opmodule adjunction for the opmonoidal adjunction \(\mathcal{E} \rightleftarrows \mathcal{H}\) defined in Section 5.9. The \(\mathcal{H}\)-module category structure of \(B\text{-Mod}\) is given by the left \(B\)-action

\[
b(l \otimes_A m) := b(-1)l \otimes_A b(0)m,
\]

where \(b \in B\), \(l \in L\) (an \(H\)-module), and \(m \in M\) (a \(B\)-module).

Hence, as explained in Section 5.1, \(C\) defines a compatible pair of comonads \(C \otimes_A -\) on \(B\text{-Mod}\) and \(A\text{-Mod}\). The distributive law resulting from Theorem 2.9 generalises the Yetter-Drinfel’d braiding, as it is given for a \(B\)-module \(M\) by

\[
\chi: B \otimes_A (C \otimes_A M) \to C \otimes_A (B \otimes_A M), \quad b \otimes_A (c \otimes_A m) \mapsto b(-1)c \otimes_A (b(0) \otimes_A m).
\]

5.14. The main example. If \(H\) is a bialgebroid, then \(C := H\) is a module coalgebra with left action given by multiplication and coalgebra structure given by that of \(H\). If \(H\) is a Hopf algebroid, then \(B := H^{\text{op}}\) is a comodule algebra with unit map \(\eta_B(a) := \eta(1 \otimes_k a)\) and coaction

\[
\delta: H^{\text{op}} \to H \otimes_A H^{\text{op}}, \quad b \mapsto b_- \otimes_A b_+.
\]

In the sequel we write \(B\) as \(- \otimes_{A^{\text{op}}} H\) rather than \(H^{\text{op}} \otimes_A -\) to work with \(H\) only. Then the distributive law becomes

\[
\chi: (H \otimes_A M) \otimes_{A^{\text{op}}} H \to H \otimes_A (M \otimes_{A^{\text{op}}} H), \quad (c \otimes_A m) \otimes_{A^{\text{op}}} b \mapsto b_- c \otimes_A (m \otimes_{A^{\text{op}}} b_+),
\]
Proposition 3.5 completely characterises the right χ-coalgebras: in this example, they are given by right H-modules and left H-comodules M with right χ-coalgebra structure
\[\rho : m \otimes_{A^{op}} h \mapsto h_- m_{(-1)} \otimes_A m_{(0)} h_+ . \]
In general, the characterisation of left χ-coalgebras mentioned in Remark 3.6 does not provide us with such an explicit description. Note, however, that one obtains left χ-coalgebras from (left-left) Yetter-Drinfel’d modules:

5.15. Definition. A Yetter-Drinfel’d module over H is a left H-comodule and left H-module N such that for all $h \in H, n \in N$, one has
\[(hn)_{(-1)} \otimes_A (hn)_{(0)} = h_+ (1) n_{(-1)} h_- \otimes_A h_+ (2) n_{(0)} . \]
Indeed, each such Yetter-Drinfel’d module defines a left χ-coalgebra
\[N := - \otimes_H N : H^{op}\text{-Mod} \to k\text{-Mod} \]
whose χ-coalgebra structure is given by
\[\lambda : (h \otimes_A x) \otimes_H n \mapsto (xn_{(-1)} + h_+ \otimes_{A^{op}} h_- n_{(-1)-}) \otimes_H n_{(0)} . \]
The resulting duplicial object $C_T(N, M)$ is the one studied in [KK11, Kow13].

Identifying $p b A^{op} h q b H N b A^{op} N$, the χ-coalgebra structure becomes
\[\lambda : (h \otimes_A x) \otimes_H n \mapsto xn_{(-1)} + h_+ \otimes_{A^{op}} h_- n_{(-1)-} n_{(0)} . \]
Using this identification, we give explicit expressions of the operators L_n and R_n as well as t^T_n that appeared in Sections 4.5 and 4.7:

first of all, observe that the right H-module structure on $SM := H_4 \otimes_A M$ is given by
\[(h \otimes_A m) g := g_- h \otimes_A mg_+ , \]
whereas the right H-module structure on $TM := M \otimes_{A^{op}} H_4$ is given by
\[(m \otimes_{A^{op}} h) g := m \otimes_{A^{op}} hg . \]
The cyclic operator from Section 4.5 then results as
\[t^T_n(m \otimes_{A^{op}} h^1 \otimes_{A^{op}} \cdots \otimes_{A^{op}} h^n \otimes_{A^{op}} n) = m_{(0)} h^1_+ \otimes_{A^{op}} h^2_+ \otimes_{A^{op}} \cdots \otimes_{A^{op}} h^n_+ \otimes_{A^{op}} (n_{(-1)} h^n_- \cdots h^1_- m_{(-1)} n_{(-1)-}) \otimes_{A^{op}} (n_{(-1)} h^n_- \cdots h^1_- m_{(-1)} n_{(0)}) , \]
and for the operators L and R from Section 4.7 one obtains with the help of the properties [Sch00, Prop. 3.7] of the translation map (5.1):
\[L_n : (h^1 \otimes_A \cdots \otimes_A h^{n+1} \otimes_A m) \otimes_H n \mapsto (mn_{(-1)} + h^1_+ \otimes_{A^{op}} h^2_+ \otimes_{A^{op}} \cdots \otimes_{A^{op}} h^{n+1}_{(-1)-}) \otimes_H n_{(0)} , \]
along with
\[R_n : (m \otimes_{A^\text{op}} h^1 \otimes_{A^\text{op}} \cdots \otimes_{A^\text{op}} h^n \otimes_{A^\text{op}} 1) \otimes_H n \mapsto \\
(m_{(-n+1)} \otimes_A m_{(-n)} h^1_{(1)} \otimes_A m_{(-n+1)} h^2_{(2)} h^2_{(1)} \otimes_A \cdots \\
\otimes_A m_{(-1)} h^1_{(n)} h^2_{(n-1)} \cdots h^n_{(1)} \otimes_A m_{(0)}) \otimes_H h^1_{(n+1)} h^2_{(n)} \cdots h^n_{(2)} n. \]

Compare these maps with those obtained in [KK11, Lemma 4.10]. Hence, one has:
\[
(L_n \circ R_n)((m \otimes_{A^\text{op}} h^1 \otimes_{A^\text{op}} \cdots \otimes_{A^\text{op}} h^n \otimes_{A^\text{op}} 1) \otimes_H n) = \\
m_{(0)} (h^1_{(n+1)} h^2_{(n)} \cdots h^n_{(2)} n)_{(-1)} + m_{(-n-1)} \otimes_{A^\text{op}} m_{(-n+1)} - m_{(-n)} h^1_{(1)} + \\
\otimes_{A^\text{op}} h^1_{(1)} - m_{(-n+1)} h^2_{(2)} + h^2_{(1)} \otimes_{A^\text{op}} \cdots \\
\otimes_{A^\text{op}} h^1_{(1)} - h^2_{(2)} n_{(-1)} - h^1_{(n+1)} \cdots h^n_{(2)} n_{(0)} = m_{(0)} ((h^1_{(2)} \cdots h^n_{(2)} n_{(-1)}) - m_{(-1)} - h^1_{(1)} + \\
\otimes_{A^\text{op}} h^1_{(1)} \cdots h^n_{(2)} n_{(0)}) - m_{(-1)} m_{(-1)} - n_{(0)} = m \otimes_{A^\text{op}} n.
\]

Finally, if \(M \otimes_{A^\text{op}} N \) is a stable anti Yetter-Drinfel’d module [BS08], that is, if
\[m_{(0)} (n_{(-1)} m_{(-1)}) + \otimes_{A^\text{op}} (n_{(-1)} m_{(-1)}) = m \otimes_{A^\text{op}} n \]
holds for all \(n \in N, m \in M \), we conclude by
\[
(L_n \circ R_n)((m \otimes_{A^\text{op}} h^1 \otimes_{A^\text{op}} \cdots \otimes_{A^\text{op}} h^n \otimes_{A^\text{op}} n) = \\
m \otimes_{A^\text{op}} h^1_{(1)} + \otimes_{A^\text{op}} \cdots \otimes_{A^\text{op}} h^1_{(1)} - h^1_{(2)} \cdots h^n_{(2)} n = m \otimes_{A^\text{op}} h^1 \otimes_{A^\text{op}} \cdots \otimes_{A^\text{op}} h^n \otimes_{A^\text{op}} n.
\]

Observe that in [Kow13] this cyclicity condition was obtained for a different complex which, however, computes the same homology.

5.16. The Antipode as a 1-Cell. If \(A = k \), then the four actions \(\cdot, \cdot, \cdot, \cdot \) coincide and \(H \) is a Hopf algebra with antipode \(S: H \to H \) given by \(S(h) = \varepsilon(h_+) h_- \). The aim of this brief section is to remark that this defines a 1-cell that connects the two instances of Theorem 2.9 provided by the opmonoidal adjunction and the opmodule adjunction considered above.

Indeed, in this case we have \(A^e-\text{Mod} \cong A-\text{Mod} = k-\text{Mod} \), but \(H^{op}-\text{Mod} \neq H-\text{Mod} \) unless \(H \) is commutative. However, \(S \) defines a lax morphism \(\sigma : - \otimes_k H \text{id} \to H \otimes_k - \text{id} \), given in components by
\[\sigma_X : X \otimes_k H \to H \otimes_k X, \quad x \otimes_k h \mapsto S(h) \otimes_k x. \]

The fact that this is a lax morphism is equivalent to the fact that \(S \) is an algebra antihomomorphism. Also, the lifted comonads agree and are given by \(H \otimes_k - \) with comonad structure given by the coalgebra structure of \(H \); clearly, \(\gamma = \text{id} : \text{id}H \otimes_k - \to H \otimes_k -\text{id} \) is
a colax morphism. Furthermore, the Yang-Baxter condition is satisfied, so we have that
(id, σ, γ) is a 1-cell in the 2-category of mixed distributive laws. If we apply the 2-functor
i to this, we get a 1-cell (Σ, ˜σ, ˜γ) between a comonad distributive law on the category
of left H-modules and one on the category of right H-modules. The identity lifts to the
functor Σ: H-Mod ! Mod-H which sends a left H-module X to the right H-module with
right action given by

\[x ◦ h := S(h)x. \]

6. Hopf monads à la Mesablishvili-Wisbauer

where A: C ! C is a functor, (A, µ, η) is a monad, (A, Δ^A, ε^A) is a comonad and θ: AA ! AA
is a mixed distributive law satisfying a list of compatibility conditions.

In particular, µ and Δ^A are required to be compatible in the sense that there is a
commutative diagram

\[
\begin{array}{ccc}
AA & \xrightarrow{\mu} & A \\
\downarrow{AΔ^A} & & \downarrow{A^µ} \\
AAA & \xrightarrow{θ^A} & AAA
\end{array}
\] (6.1)

The other defining conditions rule the compatibility between the unit and the counit with each other and with µ respectively Δ^A, see [MW11] for the details.

It follows immediately that we also obtain an instance of Theorem 2.9 in this situation:
if we take A = C^B to be the Eilenberg-Moore category of the monad B = (A, µ, η) as in
Section 2.13, then the mixed distributive law θ defines a lift V = (V, Δ^V, ε^V) of the
comonad C = (A, Δ^A, ε^A) to A.

Note that in general, neither A nor C need to be monoidal, so B is in general not
an opmonoidal monad. Conversely, recall that for the examples of Theorem 2.9 obtained
from opmonoidal monads, B need not equal C.

6.2. Examples from bialgebras. In the main example of bimonads in the above
sense, we in fact do have B = C and we are in the situation of Section 5.9 for a bialgebra
H over A = k. The commutativity of (6.1) amounts to the fact that the coproduct is an
algebra map.

This setting provides an instance of Proposition 2.19 since there are two lifts of B = C
from A = k-Mod to B = H-Mod: the canonical lift S = T = FU which takes a left
H-module L to the H-module H ⊗_k L with H-module structure given by multiplication
in the first tensor component, and the lift V which takes L to H ⊗_k L with H-action given
by the codiagonal action g(h ⊗_k y) = g(1)h ⊗_k g(2)y, that is, the one defining the monoidal
structure on B.

In this example, the map β from Proposition 2.21 is given by

\[H ⊗_k L \rightarrow H ⊗_k L, \quad g ⊗_k y \mapsto g(1) ⊗_k g(2)y \]
which for \(L = H \) is the Galois map from Definition 5.8. This is bijective for all \(L \) if and only if it is so for \(L = H \), which is also equivalent to \(H \) being a Hopf algebra. However, this Galois map should not just be viewed as a \(k \)-linear map, but as a natural \(H \)-module morphism between the two \(H \)-modules \(T(L) \) and \(V(L) \), and this is the natural transformation \(\Gamma^{T,V}(\text{id}) \) from Section 2.17.

As shown in [LMW15, Theorem 5.8(c)], this characterisation of Hopf algebras in terms of the bijectivity of the Galois map extends straightforwardly to Hopf monads.

6.3. An example not from bialgebras.

Another example of a bimonad is the nonempty list monad \(L^+ \) on \(\text{Set} \), which assigns to a set \(X \) the set \(L^+X \) of all nonempty lists of elements in \(X \), denoted \([x_1, \ldots, x_n] \). The monad multiplication is given by concatenation of lists and the unit maps \(x \) to \([x] \). The comonad comultiplication is given by \(\Delta[x_1, \ldots, x_n] = [[[x_1, \ldots, x_n]], \ldots, [[x_n]]] \), the counit is \(\varepsilon[x_1, \ldots, x_n] = x_1 \), and the mixed distributive law

\[
\theta : L^+L^+ \to L^+L^+
\]

is defined as follows: given a list

\[
[[x_{1,1}, \ldots, x_{1,n_1}], \ldots, [x_{m,1}, \ldots, x_{m,n_m}]]
\]

in \(L^+L^+X \), its image under \(\theta_X \) is the list with

\[
\sum_{i=1}^{m} n_i(m - i + 1)
\]

terms, given by the lexicographic order, that is

\[
[[x_{1,1}, x_{2,1}, x_{3,1} \ldots, x_{m,1}], \ldots, [x_{1,n_1}, x_{2,1}, x_{3,1}, \ldots, x_{m,1}]],
\]

\[
[x_{2,1}, x_{3,1} \ldots, x_{m,1}], \ldots, [x_{2,n_2}, x_{3,1}, \ldots, x_{m,1}],
\]

\[
\ldots,
\]

\[
[x_{m,1}], [x_{m,2}], \ldots, [x_{m,n_m}].
\]

One verifies straightforwardly:

6.4. Proposition. \(L^+ \) becomes a bimonad on \(\text{Set} \) whose Eilenberg-Moore category is \(\text{Set}^{L^+} \cong \text{SemiGp} \), the category of (nonunital) semigroups.

The second lift \(V \) of the comonad \(L^+ \) that one obtains from the bimonad structure on \(\text{SemiGp} \) is as follows. Given a semigroup \(X \), we have \(VX = L^+X \) as sets, but the binary operation is given by

\[
VX \times VX \to VX
\]

\[
[x_1, \ldots, x_m][y_1, \ldots, y_n] := [x_1y_1, \ldots, x_my_1, y_1, \ldots, y_n].
\]
Following Proposition 3.5, given a semigroup X, the unit turns the underlying set of X into an \mathbb{L}^+-coalgebra and hence we get a right χ-coalgebra structure on X. Explicitly, $\rho_X : TX \to VX$ is given by

$$\rho[x_1, \ldots, x_n] = [x_1 \cdots x_n, x_2 \cdots x_n, \ldots, x_n].$$

The image of ρ is known as the left machine expansion of X \cite{BR84}.

6.5. Proposition. The only θ-entwined algebra is the trivial semigroup \emptyset.

Proof. An \mathbb{L}^+-coalgebra structure $\beta : T \to \mathbb{L}^+T$ is equivalent to T being a forest of at most countable height (rooted) trees, where each level may have arbitrary cardinality. The structure map β sends x to the finite list of predecessors of x. A θ-entwined algebra is therefore such a forest, which also has the structure of a semigroup such that for all $x, y \in T$ with $\beta(y) = [y, y_1, \ldots, y_n]$ we have

$$\beta(xy) = [xy, xy_1, \ldots, xy_n, y, y_1, \ldots, y_n].$$

Let T be a θ-entwined algebra. If T is non-empty, then there must be a root. We can multiply this root with itself to generate branches of arbitrary height. Suppose that we have a branch of height two; that is to say, an element $y \in T$ with $\beta(y) = [y, x]$ (so, in particular, $x \neq y$). Then $\beta(xy) = [xy, y]$, but $\beta(xx) = [xx, xy, x, y]$. This is impossible since x and y cannot both be the predecessor of xy. \blacksquare

References

\cite{App65} H. W. Applegate, Acyclic models and resolvent functors, Ph. D. Thesis Columbia University, ProQuest LLC, Ann Arbor, MI, 1965.

Università di Napoli Federico II, Dipartimento di Matematica e Applicazioni
P.le Tecchio 80, 80125 Napoli, Italia

University of Glasgow, School of Mathematics and Statistics
15 University Gardens, G12 8QW Glasgow, UK

University of Glasgow, School of Mathematics and Statistics
15 University Gardens, G12 8QW Glasgow, UK

Email: niels.kowalzig@unina.it
 ulrich.kraehmer@glasgow.ac.uk
 p.slevin.1@research.gla.ac.uk

This article may be accessed at http://www.tac.mta.ca/tac/
THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that significantly advance the study of categorical algebra or methods, or that make significant new contributions to mathematical science using categorical methods. The scope of the journal includes: all areas of pure category theory, including higher dimensional categories; applications of category theory to algebra, geometry and topology and other areas of mathematics; applications of category theory to computer science, physics and other mathematical sciences; contributions to scientific knowledge that make use of categorical methods.

Articles appearing in the journal have been carefully and critically refereed under the responsibility of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted for publication.

Full text of the journal is freely available from the journal’s server at http://www.tac.mta.ca/tac/. It is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For institutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is \TeX, and \LaTeX2e is required. Articles in PDF format may be submitted by e-mail directly to a Transmitting Editor. Please obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

\TeXenical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant \TeXeditor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne: gavin.seal@fastmail.fm

Transmitting editors. Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Richard Blute, Université d’Ottawa: rblute@uottawa.ca
Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown(at)btinternet.com
Valeria de Paiva: valeria.depaiva@gmail.com
Ezra Getzler, Northwestern University: getzler(at)northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Martin Hyland, University of Cambridge: M.Hyland@dpmms.cam.ac.uk
Anders Kock, University of Aarhus: kock@imf.au.dk
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Ieke Moerdijk, Radboud University Nijmegen: i.moerdijk@math.ru.nl
Susan Niefield, Union College: niefiels@union.edu
Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca