#
Lax Operad Actions and Coherence for Monoidal
n-Categories, A_{\infty} Rings
and Modules

##
Gerald Dunn

We establish a general coherence theorem for lax operad actions on an
n-category which implies that an n-category with such an action is lax
equivalent to one with a strict action. This includes familiar coherence
results (e.g. for symmetric monoidal categories) and many new ones. In
particular, any braided monoidal n-category is lax equivalent to a strict
braided monoidal n-category. We also obtain coherence theorems for
A_{\infty} and E_{\infty} rings and for lax modules over such rings. Using
these results we give an extension of Morita equivalence to A_{\infty}
rings and some applications to infinite loop spaces and algebraic
K-theory.

Keywords: braided monoidal n-category, operad, ring spectrum, A8 ring, Morita equivalence.

1991 MSC: 18C15, 18D05, 18D10, 19D23, 55P47, 55U40.

*Theory and Applications of Categories*, Vol. 3, 1997, No. 4, pp 50-84.

http://www.tac.mta.ca/tac/volumes/1997/n4/n4.dvi

http://www.tac.mta.ca/tac/volumes/1997/n4/n4.ps

http://www.tac.mta.ca/tac/volumes/1997/n4/n4.pdf

ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1997/n4/n4.dvi

ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1997/n4/n4.ps

TAC Home