THE LOCAL-GLOBAL PRINCIPLE IN LEAVITT PATH ALGEBRAS

Songül Esin

Abstract. This is a short note on how a particular graph construction on a subset of edges that lead to a subalgebra construction, provided a tool in proving some ring theoretical properties of Leavitt path algebras.

1 Introduction

This paper is an expository note publicizing how a particular subalgebra construction which first appeared in the paper [5] by G.Abrams and K.M.Rangaswamy was used in proving many theorems on Leavitt path algebras. The power of the subalgebra construction relies on extending a particular property on a Leavitt path algebra over a “smaller” graph to the Leavitt path algebra of the whole graph. This can be visualised as from a local view to a global setting, “local-to-global jump”.

We start by recalling the definitions of a path algebra and a Leavitt path algebra, (see [2] for a more extended study on Leavitt path algebras). A directed graph $E = (E^0, E^1, r, s)$ consists of two countable sets E^0, E^1 and functions $r, s : E^1 \to E^0$. The elements E^0 and E^1 are called vertices and edges, respectively. For each $e \in E^0$, $s(e)$ is the source of e and $r(e)$ is the range of e. If $s(e) = v$ and $r(e) = w$, then we say that v emits e and that w receives e. A vertex which does not receive any edges is called a source, and a vertex which emits no edges is called a sink. A graph is called row-finite if $s^{-1}(v)$ is a finite set for each vertex v. For a row-finite graph the edge set E^1 of E is finite if its set of vertices E^0 is finite. Thus, a row-finite graph is finite if E^0 is a finite set.

A path in a graph E is a sequence of edges $\mu = e_1 \ldots e_n$ such that $r(e_i) = s(e_{i+1})$ for $i = 1, \ldots, n-1$. In such a case, $s(\mu) := s(e_1)$ is the source of μ and $r(\mu) := r(e_n)$ is the range of μ, and n is the length of μ, i.e., $l(\mu) = n$.

If $s(\mu) = r(\mu)$ and $s(e_i) \neq s(e_j)$ for every $i \neq j$, then μ is called a cycle. If E does not contain any cycles, E is called acyclic. For $n \geq 2$, define E^n to be the set...
of paths of length \(n \), and \(E^* = \bigcup_{n \geq 0} E^n \) the set of all finite paths. Denote by \(E^\infty \) the set of all infinite paths of \(E \), and by \(E^{\leq \infty} \) the set \(E^\infty \) together with the set of finite paths in \(E \) whose range vertex is a sink. We say that a vertex \(v \in E^0 \) is **cofinal** if for every \(\gamma \in E^{\leq \infty} \) there is a vertex \(w \) in the path \(\gamma \) such that \(v \geq w \). We say that a graph \(E \) is cofinal if every vertex in \(E \) is cofinal.

The path \(K \)-algebra over \(E \) is defined as the free \(K \)-algebra \(K[E^0 \cup E^1] \) with the relations:

1. \(v_i v_j = \delta_{ij} v_i \) for every \(v_i, v_j \in E^0 \).
2. \(e_i = e_i r(e_i) = s(e_i) e_i \) for every \(e_i \in E^1 \).

This algebra is denoted by \(KE \). Given a graph \(E \), define the extended graph of \(E \) as the new graph \(\hat{E} = (E^0, E^1 \cup (E^1)^*, r', s') \) where \((E^1)^* = \{ e_i^* \mid e_i \in E^1 \} \) and the functions \(r' \) and \(s' \) are defined as

\[
r'(i) = r, \quad s'(i) = s, \quad r'(e_i^*) = s(e_i) \quad \text{and} \quad s'(e_i^*) = r(e_i).
\]

The Leavitt path algebra of \(E \) with coefficients in \(K \) is defined as the path algebra over the extended graph \(\hat{E} \), with relations:

1. \(e_i^* e_j = \delta_{ij} r(e_j) \) for every \(e_j \in E^1 \) and \(e_i^* \in (E^1)^* \).
2. \(v_i = \sum_{\{ e_j \in E^1 \mid s(e_j) = v_i \}} e_j e_j^* \) for every \(v_i \in E^0 \) which is not a sink.

This algebra is denoted by \(L_K(E) \). The conditions (CK1) and (CK2) are called the Cuntz-Krieger relations. In particular condition (CK2) is the Cuntz-Krieger relation at \(v_i \). If \(v_i \) is a sink, we do not have a (CK2) relation at \(v_i \). Note that the condition of row-finiteness is needed in order to define the equation (CK2).

Given a graph, we define a new graph built upon the given one that will be necessary for the subalgebra construction. The construction is based on an idea presented by Raeburn and Szymański in [12, Definition 1.1]. Then, we construct several examples.

Definition 1. [5, Definition 2] Let \(E \) be a graph, and \(F \) be a finite set of edges in \(E \). We define \(s(F) \) (resp. \(r(F) \)) to be the sets of those vertices in \(E \) which appear as the source (resp. range) vertex of at least one element of \(F \). We define a graph \(E_F \) as follows:

\[
E_F^0 = F \cup (r(F) \cap s(F)) \cup (E^1 \setminus F) \cup (r(F) \setminus s(F)),
\]

\[
E_F^1 = \{(e, f) \in F \times E_F^0 \mid r(e) = s(f)\},
\]

and where \(s((x, y)) = x \), \(r((x, y)) = y \) for any \((x, y) \in E_F^1 \).

**

Surveys in Mathematics and its Applications 13 (2018), 147–157

http://www.utgjiu.ro/math/sma
Example 2. [5, Example 1] Let E be the rose with n-petals graph

Let $F = \{y_1\}$. Then $E_F^0 = \{y_1\} \cup \{v\}$, and $E_F^1 = \{(y_1, y_1), (y_1, v)\}$. Pictorially, E_F is given by

This example indicates that various properties of the graph E need not pass to the graph E_F. For instance, E is cofinal, while E_F is not. In particular, $L_K(E)$ is a simple algebra, while $L_K(E_F)$ is not.

Example 3. Let E be the graph

and $F = \{f_1, g_1\}$. Then, E_F is given by

In this example E is not cofinal but E_F is cofinal. Also, $L_K(E)$ is not purely infinite simple while $L_K(E_F)$ is.

Example 4. Consider the infinite clock graph E with one source which emits countably many edges as follows:

Let $F = \{f\}$ and then E_F is

This is an example which shows that both E and E_F are acyclic graphs where F is any subset of vertices. Actually, if E is any acyclic graph and F any subset of vertices then E_F is acyclic is proved in [5, Lemma 1].
2 The Subalgebra Construction

Although in general E_F need not be a subgraph of E, the Leavitt path algebras $L_K(E_F)$ and $L_K(E)$ are related via a homomorphism which leads to a subalgebra construction of $L_K(E)$.

In [5, Proposition 1], for a finite set of edges F in a graph E, the algebra homomorphism $\theta : L_K(E_F) \to L_K(E)$ having the properties

1. $F \cup F^* \subseteq \text{Im}(\theta)$,
2. If $w \in r(F)$, then $w \in \text{Im}(\theta)$,
3. If $w \in E^0$ has $s^{-1}_E(w) \subseteq F$, then $w \in \text{Im}(\theta)$,

is defined by using the following subsets G^0 and G^1 of $L_K(E)$

\[
G^0 = \{ee^* \mid e \in F\} \cup \{v - \sum_{f \in F, s(f) = v} ff^* \mid v \in r(F) \cap s(F) \cap s(E^1 \setminus F)\} \\
\cup \{v \mid v \in r(F) \setminus s(F)\}
\]

and

\[
G^1 = \{eff^* \mid e, f \in F, s(f) = r(e)\} \cup \{e - \sum_{f \in F, s(f) = r(e)} eff^* \mid r(e) \in r(F) \cap s(F) \cap s(E^1 \setminus F)\} \\
\cup \{e \in F \mid r(E) \in r(F) \setminus s(F)\}
\]

In particular, $\theta(w) \in G^0$ for all vertices in E_F and $\theta(w) \in G^1$ for all edges in E_F.

Let E be any graph, K any field, and \{a_1, a_2, \ldots, a_l\} any finite subset of nonzero elements of $L_K(E)$.

For each $1 \leq r \leq l$ write

\[
a_r = k_{c_1}v_{c_1} + k_{c_2}v_{c_2} + \ldots + k_{c_{t(r)}}v_{c_{t(r)}} + \sum_{i=1}^{t(r)} k_{r_i}p_{r_i}q_{r_i}^*
\]

where each k_j is a nonzero element of K, and, for each $1 \leq i \leq t(r)$, at least one of p_{r_i} or q_{r_i} has length at least 1. Let F be denote the (necessarily finite) set of those edges in E which appear in the representation of some p_{r_i} or q_{r_i}, $1 \leq r_i \leq t(r)$, $1 \leq r \leq l$.

Now consider the set

\[
S = \{v_{c_1}, v_{c_2}, \ldots, v_{c_{t(r)}} \mid 1 \leq r \leq l\}
\]
of vertices which appear in the displayed description of \(a_r\) for some \(1 \leq r \leq l\). We partition \(S\) into subsets as follows:

\[S_1 = S \cap r(F), \]
and, for remaining vertices \(T = S \setminus S_1\), we define

\[
S_2 = \{v \in T \mid s_E^{-1}(v) \subseteq F \text{ and } s_E^{-1}(v) \neq \emptyset\} \\
S_3 = \{v \in T \mid s_E^{-1}(v) \cap F = \emptyset\} \\
S_4 = \{v \in T \mid s_E^{-1}(v) \not\subseteq F \text{ and } s_E^{-1}(v) \cap (E^1 \setminus F) \neq \emptyset\}.
\]

Definition 5. [5, Definition 3] Let \(B\) of mutually orthogonal idempotents and \(\oplus\) subalgebra of \(L\) acyclic, so is each graph \(F\).

Theorem 6. [5, Proposition 1] Let \(E\) be any graph, \(K\) any field, and \(\{a_1, a_2, \ldots, a_l\}\) any finite subset of nonzero elements of \(L_K(E)\). Consider the notation presented in The Subalgebra Construction. We define \(B(a_1, a_2, \ldots, a_l)\) to be the \(K\)-subalgebra of \(L_K(E)\) generated by the set \(\text{Im}(\theta) \cup S_3 \cup S_4\). That is,

\[B(a_1, a_2, \ldots, a_l) = \langle \text{Im}(\theta). S_3, S_4 \rangle. \]

Proposition 6. [5, Proposition 1] Let \(E\) be any graph, \(K\) any field, and \(\{a_1, a_2, \ldots, a_l\}\) any finite subset of nonzero elements of \(L_K(E)\). Let \(F\) denote the subset of \(E^1\) presented in The Subalgebra Construction. For \(w \in S_4\) let \(w_w\) denote the element \(w = \sum_{f \in F, s(f) = w} f f^*\) of \(L_K(E)\). Then

1. \(\{a_1, a_2, \ldots, a_l\} \subseteq B(a_1, a_2, \ldots, a_l)\).
2. \(B(a_1, a_2, \ldots, a_l) = \text{Im}(\theta) \oplus (\oplus_{v_1 \in S_3} K v_1) \oplus (\oplus_{w_j \in S_4} K w_j)\).
3. The collection \(\{B(S) \mid S \subseteq L_K(E), S \text{ finite}\}\) is an upward directed set of subalgebras of \(L_K(E)\).
4. \(L_K(E) = \liminf_{S \subseteq L_K(E), S \text{ finite}} B(S)\).

Proposition 6, can be modified to include some more properties of the subalgebra construction in [5]. For instance, the morphism \(\theta\) in the construction is actually a graded morphism whose image is a graded submodule of \(L_K(E)\) and it also reveals some properties of cycles.

The stronger version of Proposition 6 is given in [10] as Theorem 4.1

Theorem 7. [10, Theorem 4.1] For an arbitrary graph \(E\), the Leavitt path algebra \(L_K(E)\) is a directed union of graded subalgebras \(B = A \oplus K\epsilon_1 \oplus \cdots \oplus K\epsilon_n\) where \(A\) is the image of a graded homomorphism \(\theta\) from a Leavitt path algebra \(L_K(F_B)\) to \(L_K(E)\) where \(F_B\) a finite graph which depends on \(B\), the elements \(\epsilon_i\) are homogeneous mutually orthogonal idempotents and \(\oplus\) is a ring direct sum. Moreover, if \(E\) is acyclic, so is each graph \(F_B\) and in this case \(\theta\) is a graded monomorphism.
Moreover, any cycle c in the graph F_B gives rise to a cycle c' in E such that if c has an exit in F_B then c' has an exit in E. In particular, a cycle in F_B is of the form $(f_1, f_2)(f_2, f_3)\ldots (f_n, f_1)$ and this case $f_1f_2\ldots f_n$ is a cycle in E.

Throughout recent literature this subalgebra construction has been a powerful tool. The first theorem that appears in the literature is the following:

Theorem 8. [5, Theorem 1] $L_K(E)$ is von Neumann regular if and only if E is acyclic. If E is acyclic, then $L_K(E)$ is locally K-matricial; that is, $L_K(E)$ is the direct union of subrings, each of which is isomorphic to a finite matrix rings over K.

Now, we give one implication of the statement to demonstrate how the subalgebra construction is used in the proof:

Proof. We assume E is acyclic. Let $\{B(S) \mid S \subseteq L_K(E), S \text{ finite}\}$ be the collection of subalgebras of $L_K(E)$ indicated in Proposition 6(3). By Proposition 6(4), it suffices to show that each such $B(S)$ is of the indicated form. But by Proposition 6(2), $B(S) = B(a_1, a_2, \ldots, a_l) = \text{Im}(\theta) \oplus (\oplus_{v_i \in S_3} K v_i) \oplus (\oplus_{w_i \in S_4} K u w_i)$. Since terms appearing in the second and third summands are clearly isomorphic as algebras to $K \cong M_1(K)$, it suffices to show that $\text{Im}(\theta)$ is isomorphic to a finite direct sum of finite matrix rings over K. Since E is acyclic, by Lemma 1 in [5] we have that E_F is acyclic. But E_F is always finite by definition, so we have by [3, Proposition 3.5], that $L_K(E_F) \cong \oplus_{i=1}^t M_{m_i}(K)$ for some $m_1, \ldots, m_t \in \mathbb{N}$. Since each $M_{m_i}(K)$ is a simple ring, we have that any homomorphic image of $L_K(E_F)$ must have this same form. So we get that $\text{Im}(\theta) \cong \oplus_{i=1}^t M_{m_i}(K)$ for some $m_1, \ldots, m_t \in \mathbb{N}$, and we are done. (As remarked previously, since θ is in fact an isomorphism we have $t = l$.)

We list the following theorems which are using the same Subalgebra Construction in their proofs. In particular, we only quote the parts that uses the Subalgebra Construction.

Theorem 9. [10, Theorem 5.1] Let E be an arbitrary graph. Then for the Leavitt path algebra $L_K(E)$ the following are equivalent:

1. Every left/right ideal of $L_K(E)$ is graded;
2. The class of all simple left/right $L_K(E)$-modules coincides with the class of all graded-simple left/right $L_K(E)$-modules;
3. The graph E is acyclic.

**

Surveys in Mathematics and its Applications 13 (2018), 147 – 157
http://www.utgjiu.ro/math/sma
Proof. (3) ⇒ (1) For the sake of simplicity of the notation, let $L := L_K(E)$. Suppose E is acyclic. Now, by Theorem 7, L is a direct union of graded subalgebras B_{λ} where $\lambda \in I$, an index set and where each B_{λ} is a finite direct sum of copies of K and a graded homomorphic image of a Leavitt path algebra of a finite acyclic graph. By [8, Theorem 4.14], Leavitt path algebras of finite acyclic graphs are semisimple algebras which have elementary gradings, that is, all the matrix units are homogeneous. Consequently, every ideal of each B_{λ} is graded. Let $L = \bigoplus_{n \in \mathbb{Z}} L_n$ be the \mathbb{Z}-graded decomposition of L. Since the B_{λ} are graded subalgebras, each $B_{\lambda} = \bigoplus_{n \in \mathbb{Z}} (B_{\lambda} \cap L_n)$. Let M be a left ideal of L. To show that M is graded, we need only to show that $M = \bigoplus_{n \in \mathbb{Z}} (M \cap L_n)$. Let $a \in M$. Then, for some λ, $a \in M \cap B_{\lambda}$. Note that $M \cap B_{\lambda} = B_{\lambda}$ or a left ideal of B_{λ}. Since every left ideal of B_{λ} and in particular $M \cap B_{\lambda}$ is graded, we can write $a = a_{n_1} + \cdots + a_{n_k}$ where $a_{n_i} \subset (M \cap B_{\lambda}) \cap (B_{\lambda} \cap L_{n_i}) \subset M \cap L_{n_i}$ for $i = 1, \ldots, k$. This show that $M = \bigoplus_{n \in \mathbb{Z}} (M \cap L_n)$ and hence M is a graded left ideal of L.

The next result is about graded von Neumann regular Leavitt path algebras. A ring R is von Neumann regular if for every $x \in R$ there exists $y \in R$ such that $x = yxy$. Moreover, a graded ring R is graded von Neumann regular if each homogeneous element is von Neumann regular.

Theorem 10. [10, Theorem 4.2]; [9, Theorem 10] Every Leavitt path algebra $L_K(E)$ of an arbitrary graph E is a graded von Neumann regular ring.

Proof. [10, Proof of Theorem 4.2] Suppose E is an arbitrary graph. By [10, Theorem 4.1], $L_K(E)$ is a directed union of graded subalgebras $B = A \oplus K\epsilon_1 \oplus \cdots \oplus K\epsilon_m$ where A is the image of a graded homomorphism θ from a Leavitt path algebra $L_K(F_B)$ to $L_K(E)$ with F_B a finite graph (depending on B), the elements ϵ_i are homogeneous mutually orthogonal idempotents and \oplus is a ring direct sum. Since F_B is a finite graph, $L_K(F_B)$ and hence B is graded von Neumann regular by [9]. It is then clear from the definition that the direct union $L_K(E)$ is also graded von Neumann regular.

Recall that a ring R is called left Bézout in case every finitely generated left ideal of R is principal. If the graph E is finite, then $L_K(E)$ is Bézout [4, Theorem 15]. The proof of this statement is given via a nice induction argument which we do not quote here. The generalization of this result to arbitrary graphs, which again appears in [4], uses the subalgebra construction.
Theorem 11. [4, Corollary 16] Let E be an arbitrary graph and K any field. Then $L_K(E)$ is Bézout.

Proof. By Theorem 7, $L_K(E)$ is the direct limit of unital subalgebras, each of which is isomorphic to the Leavitt path K-algebra of a finite graph. By [4, Theorem 15], each of these unital subalgebras is a Bézout subring of $L_K(E)$.

Now, we are going to prove that for any ring R, if every finite subset of R is contained in a unital Bézout subring of R, then R is Bézout. Let us consider a finitely generated left ideal of R with generators $x_1, x_2, \ldots, x_n \in R$. Then there is a unital Bézout subring S of R that contains $\{x_1, x_2, \ldots, x_n\}$. Hence, there exists $x \in S$ such that the left S-ideal $Sx_1 + Sx_2 + \cdots + Sx_n = Sx$.

Since $1_S x_i = x_i$ for all $1 \leq i \leq n$, and each x_i is in $Sx_1 + Sx_2 + \cdots + Sx_n = Sx$ which implies that for each i there exists $s_i \in S$ with $x_i = s_i x$.

Hence $Rx_1 + Rx_2 + \cdots + Rx_n = Rs_1 x + Rs_2 x + \cdots + Rs_n x \subseteq Rx$. Also, $x = 1_S x \in Sx$ implies $x \in Sx_1 + Sx_2 + \cdots + Sx_n \subseteq Rx_1 + Rx_2 + \cdots + Rx_n$. Therefore, $Rx_1 + Rx_2 + \cdots + Rx_n = Rx$ and R is a Bézout ring.

Hence, if R is taken to be $L_K(E)$, the result follows.

Recall that a ring with local units R is said to be directly finite if for every $x, y \in R$ and an idempotent element $u \in R$ such that $xu = ux = x$ and $yu = uy = y$, we have that $xy = u$ implies $yx = u$.

Theorem 12. [13, Proposition 4.3] $L_K(E)$ is directly finite if and only if no cycle in E has an exit.

The converse of Theorem 12 for Leavitt path algebras of finite graphs has been proven in [7, Theorem 3.3]. To get the infinite graphs, Lia Vas proved the theorem by using Cohn-Leavitt approach. In particular, the localization of the graph is used by considering a finite subgraph generated by the vertices and edges of just those paths that appear in representations of x, y and u in $L_K(E)$ where $xy = u$ for some local unit u. However, the subgraph F defined in this way may not produce a subalgebra $L_K(F)$ of $L_K(E)$. This problem is avoided by considering an appropriate finite subgraph F such that the Cohn-Leavitt algebra of F is a subalgebra of $L_K(E)$ and then adapts [7, Theorem 3.3] to Cohn-Leavitt algebras of finite graphs.

An alternative proof using the subalgebra construction is pointed out in [11, Theorem 3.7] using the grading on matrices. We outline the proof below (without considering the grading to refer to Theorem 12).

Theorem 13. ([11, Theorem 3.7] rephrased) For an arbitrary graph E, the following properties are equivalent for $L_K(E)$:

Surveys in Mathematics and its Applications 13 (2018), 147 – 157
http://www.utmjiu.ro/math/sma
(a) No cycle in E has an exit;

(b) $L_K(E)$ is a directed union of graded semisimple Leavitt path algebras; specifically, $L_K(E)$ is a directed union of direct sums of matrices of finite order over K or $K[x, x^{-1}]$.

(c) $L_K(E)$ is directly-finite.

Proof. (a) implies (b) Assume (a). By Theorem 7, $L_K(E)$ is a directed union of graded subalgebras $B = A \oplus K\epsilon_1 \oplus \cdots \oplus K\epsilon_n$, where A is the image of a graded homomorphism θ from a Leavitt path algebra $L_K(F_B)$ to $L_K(E)$ with F_B a finite graph depending on B. Moreover, any cycle with an exit in F_B gives rise to a cycle with an exit in E. Since no cycle in E has an exit, no cycle in the finite graph F_B has an exit. So by using [2, Theorem 2.7.3],

$$L_K(F_B) \cong \bigoplus_{i \in I} M_{n_i}(K) \oplus \bigoplus_{j \in J} M_{m_j}(K[x, x^{-1}]),$$

where n_i and m_j are positive integers I, J are index sets. Since the matrix rings $M_{n_i}(K)$ and $M_{m_j}(K[x, x^{-1}])$ are simple rings, A and hence B is a direct sum of finitely many matrix rings of finite order over K and/or $K[x, x^{-1}]$. This proves (b).

(b) implies (c) follows from the known fact that matrix rings $M_{n_i}(K)$ and $M_{m_j}(K[x, x^{-1}])$ are directly-finite and finite ring direct sums of such matrix rings are directly-finite. Hence, by condition (b), $L_K(E)$ is directly-finite.

We want to finish the survey with another application of the Subalgebra Construction. In [6], the authors do not use the exact results, however they carry the same techniques and proofs to another subgraph (dual graph) construction.

The authors present the notion of a dual of a subgraph in a graph, which is the generalization of the usual notion of dual graph found in the literature that we quote here:

Usual dual: Let E be an arbitrary graph. The *usual dual of E, $D(E)$*, is the graph formed from E by taking

\[
\begin{align*}
D(E)^0 &= \{ e \mid e \in E^1 \} \\
D(E)^1 &= \{ ef \mid ef \in E^2 \} \\
s_{D(E)}(ef) &= e, \quad r_{D(E)}(ef) = f \text{ for all } ef \in E^2.
\end{align*}
\]

The interest on the usual dual graph notion in the context of Leavitt path algebras lies on the fact that, if E is a row-finite graph without sinks, then there is an algebra isomorphism $L_K(E) \cong L_K(D(E))$ ([1, Proposition 2.11]). These statement is untrue.
for usual dual of a graph with sinks. The authors propose a new definition of dual graph which generalizes this important property to row-finite graphs with sinks.

Dual of \(F \) in \(E \): Let \(E \) be a graph and let \(F \) be a subgraph of \(E \). Denote \(F^0_1 = \{ v \in F^0 \mid s_{E}^{-1}(v) = \emptyset \} \), \(F^1_1 = r_{E}^{-1}(F^0) \) and \(F^0_2 = s(F^1) \cap s(E^1 \setminus F^1) \), \(F^1_2 = r_{F}^{-1}(F^0_2) \). The graph \(D_E(F) \), the dual of \(F \) in \(E \) is defined by

\[
D_E(F)^0 = D(F)^0 \cup F^0_1 \cup F^0_2 \\
D_E(F)^1 = D(F)^1 \cup F^1_1 \cup F^1_2 \\
s_{D_E(F)}|D(F) = s_{D(F)}, \quad r_{D_E(F)}|D(F) = r_{D(F)}
\]

For all \(e \in F^1_i \) with \(i \in \{1, 2\} \), \(s_{D_E(F)} = e \in D(F)^0 \), \(r_{D_E(F)}(e) = r_F(e) \in F^0_i \).

Dual graph: Given a graph \(E \), they define \(d(E) = D_E(E) \) and call it the dual graph of \(E \).

Then they prove the graded algebra isomorphism \(L_K(d(E)) \cong L_K(E) \) when \(E \) is a row-finite graph ([6, Proposition 3.6]). In this paper the authors also prove that for a graph \(E \) and a row-finite subgraph of \(E \) there is a graded monomorphism \(\theta : L_K(D_E(F)) \rightarrow L_K(E) \). In addition, \(F^0 \cup F^1 \subseteq \theta(L_K(D_E(E))) \). This result is stated as [6, Proposition 3.8] and the proof is basically rephrasing [5, Proposition 1.2].

Acknowledgement. The author would like to thank the following: Kulumani M. Rangaswamy for his suggestion on writing this article, Müge Kanuni for all her support and the referee for a careful and detailed review of the article and his well-suited corrections.

References

**

Surveys in Mathematics and its Applications 13 (2018), 147 – 157

http://www.utgjiu.ro/math/sma
The local-global principle in Leavitt path algebras

Songül Esin
19 Mayis mah. No: 10A/25 Kadikoy,
Istanbul, Turkey,
e-mail: songulesin@gmail.com

License

This work is licensed under a Creative Commons Attribution 4.0 International License. Ⓐ 0

Surveys in Mathematics and its Applications 13 (2018), 147 – 157
http://www.utgjiu.ro/math/sma