ON ONE INTERESTING INEQUALITY

Ladislav Matejička

Abstract. In this paper, we give a classification of points under which the generalization of Cirtoaje’s inequality or the reverse inequality are valid.

1 Introduction

Nowadays, inequalities with power-exponential functions are intensively studied. The power-exponential functions have many useful applications in mathematical analysis and in other theories like statistics, biology, optimization, ordinary differential equations, probability,.... The history and the literature review of some interesting inequalities with power-exponential functions can be found for example in [2]. Some other interesting problems concerning inequalities of power-exponential functions can be found for example in [6]. Cirtoaje, in the paper [1], has posted the following interesting conjecture on the inequalities with power-exponential functions. We note that the inequality is similar to the reverse arithmetic-geometric mean inequality with the rearrangement of its terms.

Conjecture 1. If $a, b \in (0; 1]$ and $r \in [0; e]$, then

$$2\sqrt{a^rb^b} \geq a^r + b^r.$$ (1.1)

The conjecture was proved by Matejička [3]. Matejička also proved (1.1) under other conditions in the papers [4, 5]. For example, it was proved that (1) is valid for $a, b, r \in (0; e]$. In the paper [5], it was also showed that the certain generalization of Cirtoaje’s inequality fulfils an interesting property with some applications. The one of this applications is a classification of solution points of Cirtoaje’s inequality (CI), which we make in this paper.

2010 Mathematics Subject Classification: 26D15;
Keywords: Inequalities with power-exponential functions; Cirtoaje’s inequality
Dedicated to my grandmother Žofia Čuchorová.

**

http://www.utgjiu.ro/math/sma
Notations and preliminaries.

For the convenience of the reader, we provide a summary of the mathematical notations and definitions used in this paper (see also [5]). Put

\[F(r) = \ln n + \frac{r}{n} \left(\sum_{i=1}^{n} x_i \ln x_i \right) - \ln \left(e^{rx_1} + \sum_{i=1}^{n-1} e^{rx_i+1} \ln x_i \right). \]

(2.1)

The function \(F(r) \) is defined on \(R_+^n \) where \(n \in \mathbb{N}, r \geq 0, R_+^n = \{(x_1, ..., x_n), \ x_i > 0, \ i = 1, ..., n\}. \) We note that \(F(r) \geq 0 \) is equivalent to the following generalization of Cirtoaje’s inequality (again CI)

\[n^{\frac{n}{n}} \prod_{i=1}^{n} x_i^{rx_i} \geq x_1^{rx_1} + \sum_{i=1}^{n-1} x_i^{rx_i+1}. \]

(2.2)

The inequality (2.2) was published for first time as a conjecture in the paper [2]. In the paper [4] it was shown that (3) for \(n = 3 \) does not valid on \(M = \{(x_1, x_2, x_3), \ 1 \geq x_i > 0, \ i = 1, 2, 3\} \) for \(r \in [0; e] \).

The reverse inequality to the generalization of Cirtoaje’s inequality

\[n^{\frac{n}{n}} \prod_{i=1}^{n} x_i^{rx_i} < x_1^{rx_1} + \sum_{i=1}^{n-1} x_i^{rx_i+1} \]

(2.3)

we denote by RCI.

The function

\[g(x_1, ..., x_n) = \frac{1}{n} \sum_{i=1}^{n} x_i \log(x_i) - m_x, \]

(2.4)

where \(m_x = \max_{1 \leq m \leq n} \{x_{m+1} \log(x_m)\}, \ x_1 = x_{n+1}. \)

(2.5)

we will call characteristic function of CI.

Put

\[O_\varepsilon(A) = \{X \in R^n; \ |X - A| < \varepsilon, \varepsilon > 0\}, \]
\[S^n = \{(x_1, ..., x_n) \in R_+^n; \ x_i = x_j, \ i, j = 1, ..., n\}, \]
\[M^n_+ = \{(x_1, ..., x_n) \in R_+^n; \ g(x_1, ..., x_n) > 0\}, \]
\[M^n_0 = \{(x_1, ..., x_n) \in R_+^n; \ g(x_1, ..., x_n) = 0\}, \]
\[M^n_0 = \{(x_1, ..., x_n) \in R_+^n; \ g(x_1, ..., x_n) < 0\}. \]

Denote \(r_A \) the positive root of \(F(r) = 0 \) (if the root exists) for \(A \in R^n_+ - S^n \). From the results of [5] we get that for each \(A \in R^n_+ \) there is a finite limit

\[g(A) = \lim_{r \to +\infty} F'(r) = \frac{1}{n} \sum_{i=1}^{n} x_i \log(x_i) - m_x. \]
Proof.

Proof follows from the following Lemma 3.

Lemma 3.

- Let $A \in M_+^n$. Then there is $O\varepsilon(A) \subset R^n_+$ such that CI is valid for all $r \geq 0$ on $O\varepsilon(A)$,

- Let $A \in M_0^n$. Then CI is valid for all $r \geq 0$ in A,

- Let $A \in M^n$. Then there is $O\varepsilon(A) \subset R^n_+, 0 < p \leq q < \infty$ such that CI is valid for all $0 \leq r \leq p$ on $O\varepsilon(A)$ and RCI is valid for all $r > q$ on $O\varepsilon(A)$.

Proof. If $A \in M^n_+$ then we have $g(A) > 0$. From continuity of g we get there is $O\varepsilon(A) \subset R^n_+$ such that $g(X) > 0$ on $O\varepsilon(A)$. If $g(X) > 0$ then from $F(0) = 0$, $F'(0) > 0$, $F''(r) < 0$ and $\lim_{r \to +\infty} F'(r) = g(X) > 0$ (see [5]) we obtain that CI is valid in X for all $r \geq 0$.

If $A \in M^n_-$ then we have $g(A) < 0$. From $F(0) = 0$, $F'(0) > 0$, we have $F(A, r_{00}) > 0$ for some $r_{00} > 0$. From continuity of F we obtain $F(X, r_0) > 0$ for some $r_0 > 0$ and $X \in O_1(A)$ and from $\lim_{r \to +\infty} F'(r) = g(A) < 0$ we have $F(A, s_0) < 0$ for some $s_0 \geq r_0$. It implies $F(X, r) > 0$ for $X \in O_1(A)$ and $0 \leq r \leq r_0$. We also have there is $O_2(A) \subset R^n_+$ such that $F(X, s_0) < 0$ for $X \in O_2(A)$. So $F(X, r) < 0$ for $X \in O_2(A)$ and for $r > s_0$. Put $O\varepsilon(A) = O_1(A) \cap O_2(A)$. The proof is complete.

From results of the paper [5] we can obtain even more information about points where CI and RCI is valid.

For example it is easy to show that:

- There is no $A \in R^n_+$ such that RCI is valid in A for all $r > 0$.

- If $M \subset M^n$ is a compact set, then there is $0 < p \leq q < \infty$ such that CI is valid for all $0 \leq r \leq p$ on M and RCI is valid for all $r > q$ on M.

**

Surveys in Mathematics and its Applications 12 (2017), 1 – 6

http://www.utgjiu.ro/math/sma
A suitable choices of points from \mathbb{R}_n^+ give that $M_+^n, M_-^n, M_0^n \neq \emptyset$ for $n \geq 2$. Indeed, $M^n_0 \neq \emptyset$ is evident.

Put $x_1 = 1, ..., x_{n-1} = 1, x_n = e$. Then

$$g(X) = \frac{1}{n} \sum_{i=1}^{n} x_i \log(x_i) - m_x = \frac{e}{n} - 1.$$

It implies $g(X) > 0$ for $n = 2$ and $g(X) < 0$ for $n \geq 3$.

Put $x_1 = 1, ..., x_{n-1} = 1, x_n = e^n$. Then

$$g(X) = \frac{1}{n} \sum_{i=1}^{n} x_i \log(x_i) - m_x = e^n - n.$$

It implies $g(X) > 0$ for $n \geq 2$.

Put $n = 2, x_1 = e^2, x_2 = e^3$. Then

$$g(X) = \frac{1}{n} \sum_{i=1}^{n} x_i \log(x_i) - m_x = e^2 - \frac{e^3}{2} < 0.$$

It implies $M^n_+, M^n_- \neq \emptyset$ for $n \geq 2$.

Example 4. Using Matlab for fitting of the curves which are solution of the characteristic equation $g(X) = 0$ for $n=2$ we obtain the following figure 1 of points of solution of CI and RCI. In the figure 1 we denote by CI + RCI points where CI and also RCI are locally valid. By CI we denote points where CI is valid for all $r > 0$.

![Figure 1](image-url)
Remark 5. Our method can be used for the analysis of other suitable power-exponential inequalities.

Remark 6. Let \(n \geq 2 \). We note that CI is not valid globally for any \(r > 0 \).

Indeed, let \(n \geq 2 \) is a natural number, and \(a \) real number such that \(a > 4n^2 \). Put \(x_1 = x_2 = ... = x_{n-1} = a \), \(x_n = 2a \), \(r = 1/a \). Easy to see that

\[
H(X) = n \sqrt[n]{\prod_{i=1}^{n} x_i^{rx_i}} \geq x_n^{rx_n} - \sum_{i=1}^{n-1} x_i^{rx_i+1} < 0.
\]

It follows from

\[
H(X) = na \sqrt[n]{4a} - na - a^2 < na2\sqrt{a} - a^2 < a\sqrt{a}(2n - \sqrt{a}) < 0.
\]

Acknowledgement. The author thanks to the unknown referee.

Competing Interest. The author declares that he has no competing interests.

References

Surveys in Mathematics and its Applications **12** (2017), 1 – 6

http://www.utgjiu.ro/math/sma

Ladislav Matejíčka
Faculty of Industrial Technologies, University of Alexander Dubček
Ivana Krasku 491/30 020 01 Púchov,
Slovakia.
e-mail: ladislav.matejicka@tnuni.sk
http://www.fpt.tnuni.sk/

License

This work is licensed under a Creative Commons Attribution 4.0 International License.