n: a survey">

Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 11 (2016), 33 -- 75

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.


Harry J. Slatyer

Abstract. We discuss domains of holomorphy and several notions of pseudoconvexity (drawing parallels with the corresponding concepts from geometric convexity), and present a mostly self-contained solution to the Levi problem. We restrict our attention to domains of ℂn.

2010 Mathematics Subject Classification: 32E40; 32-01
Keywords: classical Levi problem, survey

Full text


  1. H.~Behnke and K.~Stein. Konvergente Folgen nichtschlichter Regularitätsbereiche. Annali di Matematica Pura ed Applicata, 28(1):317--326, 1949. MR35338(11,719c). Zbl 0038.05402.

  2. L.~Bers. Introduction to Several Complex Variables: Lectures Delivered at the Courant Institute of Mathematical Sciences, New York University, 1962-1963. Courant Institute of Mathematical Sciences, New York University, 1964.

  3. H.~Boas. Lecture notes on several complex variables. rlhttp://www.math.tamu.edu/~boas/courses/650-2007c/notes.pdf, accessed August 2012.

  4. S.~Bochner. Analytic and meromorphic continuation by means of Green's formula. Annals of Mathematics, 44(4):652--673, 1943. MR9206(5,116f). Zbl 0060.24206.

  5. H.~J. Bremermann. Über die Äquivalenz der pseudokonvexen Gebiete und der Holomorphiegebiete im Raum von n komplexen Veränderlichen. Mathematische Annalen, 128:63--91, 1954. MR71088(17,82a). Zbl 0056.07801.

  6. H.~Cartan and P.~Thullen. Zur Theorie der Singularitäten der Funktionen mehrerer komplexen Veränderlichen. Mathematische Annalen, 106:617--647, 1932. MR1512777. Zbl 0004.35704.

  7. H.~Grauert. On Levi's problem and the imbedding of real-analytic manifolds. Annals of Mathematics, 68(2):460--472, 1958. MR0098847(20 #5299). Zbl 0108.07804.

  8. R.~Gunning and H.~Rossi. Analytic Functions of Several Complex Variables. Reprint of the 1965 original. AMS Chelsea Publishing, Providence, 2009. MR180696(31 #4927). Zbl 1204.01045.

  9. F.~Hartogs. Einige Folgerungen aus der Cauchyschen Integralformel bei Funktionen mehrerer Veränderlichen. Sitzungsberichte der Königlich Bayerischen Akademie der Wissenschaften zu München, Mathematisch-Physikalische Klasse, 36:223--242, 1906. JFM 37.0443.01.

  10. L.~Hörmander. L2 estimates and existence theorems for the øverline∂ operator. Acta Mathematica, 113:89--152, 1965. MR179443(31 #3691). Zbl 0158.11002.

  11. L.~Hörmander. An Introduction to Complex Analysis in Several Variables. North-Holland Mathematical Library, 7. North-Holland Publishing Co., Amsterdam, 1990. MR1045639(91a:32001). Zbl 0685.32001.

  12. S.~Krantz. Function Theory of Several Complex Variables. Reprint of the 1992 edition. AMS Chelsea Publishing, Providence, 2001. MR1846625(2002e:32001). Zbl 1087.32001.

  13. P.~Lelong. Les fonctions plurisousharmoniques. Annales scientifiques de l'École Normale Supérieure, 62:301--338, 1945. MR18304(8,271f). Zbl 0061.23205.

  14. E.~Levi. Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabili complesse. Annali di Matematica Pura ed Applicata, 17:61--87, 1910. JFM 41.0487.01.

  15. E.~Levi. Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiera del campo di esistenza di una funzione analitica di due variabili complesse. Annali di Matematica Pura ed Applicata, 18:69--79, 1911. JFM 42.0449.02.

  16. E.~Martinelli. Alcuni teoremi integrali per le funzioni analitiche di piu variabili complesse. Memorie della Reale Accademia d'Italia, Classe di Scienze Fisiche, Matematiche e Naturali, 7. Serie, 9:269--283, 1938. Zbl 0022.24002.

  17. A.~P. Morse. The behavior of a function on its critical set. Annals of Mathematics, 40(2):62--70, 1939. MR1503449. Zbl 0020.01205.

  18. R.~Narasimhan. The Levi problem for complex spaces. Mathematische Annalen, 142:355--365, 1961. MR148943(26 #6439). Zbl 0106.28603.

  19. F.~Norguet. Sur les domaines d'holomorphie des fonctions uniformes de plusieurs variables complexes. (Passage du local au global.). Bulletin de la Société Mathématique de France, 82:137--159, 1954. MR71087(17,81c). Zbl 0056.07701.

  20. K.~Oka. Sur les fonctions analytiques de plusieurs variables. VI. Domaines pseudoconvexes. Tôhoku Mathematical Journal, 49:15--52, 1942. MR14470(7,290a). Zbl 0060.24006.

  21. K.~Oka. Sur les fonctions analytiques de plusieurs variables. IX. Domaines finis sans point critique intérieur. Japanese Journal of Mathematics, 23:97--155, 1953. MR71089(17,82b). Zbl 0053.24302.

  22. R.~M. Range. Holomorphic Functions and Integral Representations in Several Complex Variables. Graduate Texts in Mathematics. Springer, New York, 1986. MR847923(87i:32001). Zbl 0591.32002.

  23. B.~V. Shabat. Introduction to Complex Analysis. Part II. Functions of Several Variables. Translations of Mathematical Monographs, 110. American Mathematical Society, Providence, 1992. MR1192135(93g:32001). Zbl 0799.32001.

  24. Y.-T. Siu. Pseudoconvexity and the problem of Levi. Bulletin of the American Mathematical Society, 84(4):481--512, 1978. MR477104(57 #16648). Zbl 0423.32008.

  25. H.~J. Slatyer. The Levi Problem: references. rlhttp://levi-problem.appspot.com/references.html, accessed April 2016.

  26. V.~S. Vladimirov. Methods of the Theory of Functions of Many Complex Variables. The M.I.T. Press, Cambridge-London, 1966. MR201669(34 #1551). Zbl 0125.31904.

Harry J. Slatyer
Department of Quantum Science, The Australian National University,
Canberra, ACT 0200, Australia.
e-mail: harry.slatyer@anu.edu.au