TOEPLITZ OPERATORS AND MULTIPLICATION OPERATORS IN THE COMMUTANT OF A COMPOSITION OPERATOR ON WEIGHTED BERGMAN SPACES

Mahmood Haji Shaabani and Bahram Khani Robati

Abstract. Let \(\varphi \) be an analytic self-map of \(D \). We investigate which Toeplitz operators and multiplication operators commute with a given composition operator \(C_\varphi \) on \(A^p_\alpha(D) \) for \(1 < p < \infty \) and \(-1 < \alpha < \infty\). Let \(S \) be a bounded linear operator in the commutant of \(C_\varphi \). We show that under a certain condition on \(S \), \(S \) is a polynomial in \(C_\varphi \).

1 Introduction

Let \(D \) denote the open unit disc in the complex plane and let \(dA \) be the normalized area measure on \(D \). For \(0 < p < \infty \) and \(-1 < \alpha < \infty\), the weighted Bergman space \(A^p_\alpha(D) = A^p_\alpha \) is the space of analytic functions in \(L^p(D,dA_\alpha) \), where

\[
dA_\alpha(z) = (\alpha + 1)(1 - |z|^2)^\alpha dA(z).
\]

If \(f \) is in \(L^p(D,dA_\alpha) \), we note that

\[
\|f\|_{p,\alpha} = \left(\int_D |f(z)|^p dA_\alpha(z) \right)^{\frac{1}{p}}.
\]

When \(1 \leq p < \infty \), the space \(L^p(D,dA_\alpha) \) is a Banach space and the weighted Bergman space \(A^p_\alpha \) is closed in \(L^p(D,dA_\alpha) \). So \(A^p_\alpha \) is a Banach space. Let \(L^\infty(D) \) denote the space of essentially bounded functions on \(D \). For \(f \in L^\infty(D) \), we define

\[
\|f\|_\infty = \text{esssup}\{|f(z)| : z \in D\}.
\]

The space \(L^\infty(D) \) is a Banach space with the above norm. As usual, let \(H^\infty(D) = H^\infty \) denote the space of bounded analytic functions on \(D \). It is clear that \(H^\infty \) is closed in \(L^\infty(D) \) and hence is a Banach space.

2010 Mathematics Subject Classification: 47B33; 47B38.

Keywords: Toeplitz operator; Weighted Bergman spaces; Composition operator; Commutant; Multiplication operators.

**

http://www.utgjiu.ro/math/sma
Let φ be an analytic self-map of the unit disc, $1 < p < \infty$ and $-1 < \alpha < \infty$. The composition operator C_φ on A_p^α, is defined by the rule $C_\varphi(f) = f \circ \varphi$. Every composition operator C_φ on A_p^α is bounded (see, e.g., [9]).

Let for each $1 < p < \infty$, $P_\alpha : L^p(D, dA_\alpha) \to A_p^\alpha$ be the Bergman projection. We note that P_α is an integral operator represented by

$$P_\alpha g(z) = \int_D K(z, w) g(w) dA_\alpha(w),$$

where

$$K(z, w) = \frac{1}{(1 - zw)^{2+\alpha}} = \sum_{n=0}^\infty \frac{\Gamma(n + 2 + \alpha)}{n! \Gamma(2 + \alpha)} (zw)^n.$$

For each $f \in L^\infty(D)$ and $1 < p < \infty$, we define the Toeplitz operator T_f on A_p^α with symbol f by $T_f(g) = P_\alpha(fg)$. If we define $M_f : L^p(D, dA_\alpha) \to L^p(D, dA_\alpha)$ by $M_f(g) = fg$, it is obvious that M_f is bounded. Since the Bergman projection is bounded (see, e.g., [8]), we conclude that T_f is a bounded operator.

If f is a bounded complex valued harmonic function defined on D, then there are holomorphic functions f_1 and f_2 such that $f = f_1 + f_2$. This decomposition is unique if we require $f_2(0) = 0$. Of course f_1 and f_2 are not necessarily bounded, but they are certainly Bloch functions and they are in A_p^α for $1 \leq p \leq \infty$ (see, e.g., [1]). Throughout this paper, we write $\varphi^{[j]}$ to denote the jth iterate of φ, that is, $\varphi^{[0]}$ is the identity map on D and $\varphi^{[j+1]} = \varphi \circ \varphi^{[j]}$.

Suppose that φ is an analytic self-map of D which is not the identity and not an elliptic disc automorphism. Then there is a point a in \overline{D} such that iterates of φ converges to a uniformly on compact subsets of D. We note that for each fixed positive integer l, $\{(\varphi^{[n]})^l\}$ converges weakly to a^l as $n \to \infty$ (see, e.g., [6]). For each $1 < p < \infty$ and w in D, let λ_w be the point evaluation function at w, that is, $\lambda_w(g) = g(w)$, where $g \in A_p^\alpha$. It is well-known that point evaluations at the points of D are all continuous on A_p^α (see, e.g., [8]).

Given a fixed operator A, we say that an operator B commutes with A if $AB = BA$. The set of all operators which commute with a fixed operator A is called the commutant of A. The commutant of a particular operator is known in a few cases. For further information about commutant of a composition operator, see [2], [3] and [7]. Also in [5], Carl Cowen showed that if f is a covering map of D onto a bounded domain in the complex plane, then the commutant of the Toeplitz operator T_f is generated by composition operators induced by linear fractional transformation φ.
that satisfy \(f \circ \varphi = f \) and by Toeplitz operators. Also in [4], Bruce Clod determined which Toeplitz operators are in the commutant of a given composition operator \(C_\varphi \) on \(H^2 \).

In this paper, under certain conditions on \(\varphi \) we investigate which Toeplitz operators and Multiplication operators commute with \(C_\varphi \) on \(A^p_\alpha \) for \(1 < p < \infty \).

2 Toeplitz operators in the commutant of a composition operator

Throughout this section, \(C_\varphi \) denotes a bounded composition operator on \(A^p_\alpha \) for \(1 < p < \infty \) and \(-1 < \alpha < \infty \). Our goal is to find information about the commutant of \(C_\varphi \).

Theorem 1. Let \(f \) be a harmonic function in \(L^\infty(\mathbb{D}) \), and let \(\varphi \) be an analytic self-map of \(\mathbb{D} \) which is neither an elliptic disc automorphism of finite periodicity nor the identity mapping. If \(C_\varphi T_f = T_f C_\varphi \), then \(f \) is an analytic function.

Proof. Let \(f = f_1 + \overline{f_2} \) such that \(f_1 \) and \(f_2 \) belong to \(A^p_\alpha \). \(f_2(0) = 0 \), \(f_1(z) = \sum_{n=0}^{\infty} a_n z^n \) and \(f_2(z) = \sum_{n=1}^{\infty} b_n z^n \). Since \(\varphi \) is an analytic map which is not an elliptic disc automorphism of finite periodicity, \(\varphi \) is a constant function or \(\varphi \) is an elliptic automorphism of infinite periodicity or \(\varphi \) is neither an elliptic disc automorphism nor a constant.

Case(1): Let \(\varphi \) be a constant. Then \(\varphi(z) = b \) for all \(z \in \mathbb{D} \), where \(|b| < 1 \). Since \(T_f C_\varphi(1) = C_\varphi T_f(1) \), we have \(f_1(z) = f_1(b) \). Thus \(f_1 \) is a constant, let \(f_1 = c \). For every \(g \) in \(A^p_\alpha \), \(T_f C_\varphi(g) = C_\varphi T_f(g) \) which implies that

\[
 cg(b) = P(\overline{f_2}g)(b) + cg(b).
\]

So \(P(\overline{f_2}g)(b) = 0 \). In particular, if \(g(z) = z^k \), then \(b_k = 0 \) for all \(k \in \mathbb{N} \). Hence \(f = f_1 = c \) is analytic.

Case(2): Suppose that \(\varphi \) is an elliptic disc automorphism of infinite periodicity. If \(\varphi(0) = 0 \), then Schwarz’s Lemma implies that \(\varphi(z) = e^{i\theta}z \), where \(e^{i\theta} \neq 1 \) for all integers \(n \neq 0 \). Since \(C_\varphi T_f(1) = T_f C_\varphi(1) \), we have \(f_1(e^{i\theta}z) = f_1(z) \) and so \(f_1 = a_0 \). Now by induction, we show that \(f_2 = 0 \). Since \(T_f C_\varphi(z) = C_\varphi T_f(z) \), we have \(\overline{b_1} = e^{i\theta} \overline{b_1} \), so \(b_1 = 0 \). Let \(b_1 = b_2 = \cdots = b_{l-1} = 0 \). We show that \(b_l = 0 \). Since \(C_\varphi T_f(z_l) = T_f C_\varphi(z_l) \), we have \(\overline{b_l} = e^{i\theta} \overline{b_l} \) and so \(b_l = 0 \). Hence \(f \) must be a constant function.

Now let \(b \neq 0 \) be the fixed point of \(\varphi \). Since \(T_f C_\varphi(1) = C_\varphi T_f(1) \), we have \(f_1 = f_1 \circ \varphi \). Since \(\varphi \) has infinite periodicity, we conclude that \(f_1 \) is a constant. Hence \(f_2 \) induces a Toeplitz operator which commutes with \(C_\varphi \). We claim that

**

Surveys in Mathematics and its Applications 9 (2014), 139 – 147

http://www.utgjiu.ro/math/sma
\[f_2 = 0. \] Let \(\alpha(z) = \frac{b - z}{1 - \overline{b}z} \), note that \(\alpha^{-1} = \alpha \). Since \(T_{f_2} \) commutes with \(C_\varphi \), \(A = C_\alpha T_{f_2} C_\alpha \) commutes with \(C_\alpha C_\varphi C_\alpha = C_{\alpha \varphi \alpha} \). The function \(\alpha \circ \varphi \circ \alpha \) is an elliptic disc automorphism of infinite periodicity with fixed point 0. Thus there exists \(\{ \lambda_n \}_{n=1}^\infty \) such that \(A(z^n) = \lambda_n z^n \) and \(T_{f_2} = C_\alpha AC_\alpha \) (If \(C_\varphi T = TC_\varphi \) and \(\varphi(z) = e^{i\theta}z \), then there exists \(\{ \lambda_n \}_{n=1}^\infty \) such that \(T(z^n) = \lambda_n z^n \)). Set \(g = A(\alpha) \), we have

\[g(z) = \lambda_0 b + \sum_{k=1}^{\infty} \lambda_k (\overline{b})^k - 1 (|b|^2 - 1) z^k. \]

Since \(T_{f_2} (z) = \frac{z - 1}{z + 1} \), we see that \(g \circ \alpha \) is a constant. Hence \(g \) is a constant which implies that \(\lambda_k = 0 \) for \(k \geq 1 \). On the other hand, \(\lambda_0 = 0 \). Thus \(A = 0 \) and hence \(f_2 = 0 \).

Case(3): Let \(\varphi \) be neither an elliptic disc automorphism nor a constant. Suppose that \(a \) is the Denjoy-Wolff point of \(\varphi \). Since \(T_f C_\varphi = C_\varphi T_f \), we have

\[T_f C_{\varphi[n]}(z) = C_{\varphi[n]} T_f(z). \]

Therefore

\[C_{\varphi[n]} T_f(z) = C_{\varphi[n]} P(z f_1 + z T_{f_2}) = \left(\frac{2}{2 + \alpha} \overline{b_1} + z f_1 \right) \circ \varphi^n, \]

and \(T_f C_\varphi(1) = C_\varphi T_f(1) \) which implies that \(f_1 \circ \varphi = f_1 \). Hence

\[T_f C_{\varphi[n]}(z) = \frac{2}{2 + \alpha} \overline{b_1} + f_1 \varphi^n. \]

Now if we apply \(\lambda_0 \) on \(T_f C_{\varphi[n]} \), then we obtain

\[\lambda_0(T_f C_{\varphi[n]}(z)) = \frac{2}{2 + \alpha} \overline{b_1} + a_0 \varphi^n(0). \]

Hence \(\{ \lambda_0(T_f C_{\varphi[n]}) \} \) converges to \(\frac{2}{2 + \alpha} \overline{b_1} + a_0 a \) as \(n \to \infty \). Since \(\{ \varphi^n \} \) converges weakly to \(a \) as \(n \to \infty \), \(\{ T_f(\varphi^n) \} \) converges weakly to \(T_f(a) = af_1 \) as \(n \to \infty \). So \(\{ \lambda_0(T_f C_{\varphi[n]}) \} \) converges to \(a_0 a \) as \(n \to \infty \). Thus \(b_1 = 0 \).

Now let \(b_1 = b_2 = \cdots = b_{l-1} = 0 \). Consider \(T_f(z^l) \) in the above argument, we have

\[T_f((\varphi^n)^l) = \frac{\Gamma(l + 1)\Gamma(\alpha + 2)}{\Gamma(l + 2 + \alpha)} \overline{b_1} + f_1 (\varphi^n)^l. \]

Surveys in Mathematics and its Applications 9 (2014), 139 – 147
http://www.utgjiu.ro/math/sma
By applying λ_0 on $T_f((\varphi_1[n])^l)$ and since \(\{T_f((\varphi_1[n])^l)\} \) converges weakly to $T_f(a^l)$ as $n \to \infty$, we get
\[
a^l a_0 = \frac{\Gamma(l + 1)\Gamma(\alpha + 2)}{\Gamma(l + 2 + \alpha)} b_l + a^l a_0.
\]
Thus $b_l = 0$. Hence by the strong induction, $b_n = 0$ for all $n \geq 1$, that is, f is analytic.

Remark 2. If $\varphi(z) = \frac{1}{z}$, then φ is loxodromic and φ is not an elliptic disc automorphism. Also let $f(z) = |z|^2$, we have f is bounded and f is not a harmonic function. Since for every $n \in \mathbb{N}$,
\[
T_f C_\varphi(z^n) = C_\varphi T_f(z^n) = \frac{n + 1}{2^n(n + 2 + \alpha)} z^n,
\]
we have $C_\varphi T_f = T_f C_\varphi$ and f is not analytic. This example shows that Theorem 1 is not true in general without f being harmonic.

The following theorem shows that Theorem 1 is not true for all elliptic disc automorphisms.

Theorem 3. Let f be a harmonic function in $L^\infty(\mathbb{D})$, and let φ be an elliptic disc automorphism of period q, where $q \geq 2$ with $\varphi(0) = 0$. Then $T_f C_\varphi = C_\varphi T_f$ if and only if $f(z) = \sum_{n=0}^\infty a_n z^n + \sum_{n=1}^\infty b_n z^n$.

Proof. By hypothesis, \(\varphi(z) = e^{i\theta}z \) with $\theta = 2\pi q$, where p is an integer, q is a natural number and g.c.d($p,q) = 1$. Let $f = f_1 + f_2$ such that f_1 and f_2 belong to A^p_∞, $f_2(0) = 0$, $f_1(z) = \sum_{n=0}^\infty a_n z^n$ and $f_2(z) = \sum_{n=1}^\infty b_n z^n$. Since $T_f C_\varphi(1) = C_\varphi 1 = 1$, we have
\[
f_1(z) = f_1(e^{2\pi i p q} z) = \sum_{n=0}^\infty a_n z^n = \sum_{n=0}^\infty a_n (e^{2\pi i p q} z)^n.
\]
So if $q \nmid n$, $a_n = 0$. Hence $f_1(z) = \sum_{n=0}^\infty a_n z^n$. Since $T_f C_\varphi(1) = C_\varphi 1$, we have
\[
2 + \alpha \sum_{n=0}^\infty a_n z^n + \sum_{n=1}^\infty b_n z^n f_1(z) = z e^{2\pi i p q} f_1(z) + \frac{2}{2 + \alpha} b_1.
\]
Therefore $b_1 = 0$. For n such that $q \nmid n$ assume by induction that if $m < n$ and $q \nmid m$, then $b_m = 0$. Since
\[
T_f C_\varphi(e^{2\pi i p q} z^n) = C_\varphi e^{2\pi i p q} T_f(z^n),
\]
by a similar argument, we can prove that $b_n = 0$ which we omit the details.

Conversely, if $f(z) = \sum_{n=0}^\infty a_n z^n + \sum_{n=1}^\infty b_n z^n$, then by straightforward calculation T_f commutes with C_φ. □
In Theorems 1 and 3 we have shown that except for elliptic disc automorphisms of finite periodicity, the Toeplitz operators which commute with C_φ must be analytic, that is, symbol of the Toeplitz operator must be analytic. Now let f be in H^∞. Then $T_f = M_f$ and in this case M_f commutes with C_φ is equivalent to $f \circ \varphi = f$. We will determine which multiplication operators commute with C_φ for certain composition operator C_φ.

Lemma 4. Let f be in H^∞, and let α be a disc automorphism. Then $C_\alpha M_f C_{\alpha^{-1}} = M_{f \circ \alpha}$.

Proof. Let g be in A_α^∞. Then

$$C_\alpha M_f C_{\alpha^{-1}}(g) = C_\alpha M_f (g \circ \alpha^{-1})$$

$$= C_\alpha (g \circ \alpha^{-1} \cdot f)$$

$$= (g \circ \alpha^{-1} \cdot f) \circ \alpha$$

$$= g \cdot f \circ \alpha$$

$$= M_{f \circ \alpha}(g).$$

\[\Box \]

Proposition 5. Let φ be an elliptic disc automorphism with fixed point b, and let $f \in H^\infty$. Then

(a) If φ is of infinite periodicity, then the multiplication operator M_f commutes with C_φ if and only if f is a constant.

(b) If φ is of period q, then M_f commutes with C_φ if and only if f is of the form $f(z) = \sum_{n=0}^{\infty} a_n q (\frac{b - z}{1 - bz})^n$.

Proof. (a) The proof follows from Theorem 1 case (2).

(b) If $f \in H^\infty$ and $\alpha(z) = \frac{b - z}{1 - bz}$, then $\alpha \circ \varphi \circ \alpha$ is an elliptic disc automorphism of period q, with fixed point 0 and we have M_f commutes with C_φ if and only if $C_\alpha M_f C_\alpha$ commutes with $C_\alpha C_\varphi C_\alpha = C_{\alpha \circ \varphi \circ \alpha}$ if and only if (by Lemma 4) $M_{f \circ \alpha}$ commutes with $C_{\alpha \circ \varphi \circ \alpha}$ if and only if (by Theorem 3) $f \circ \alpha(z) = \sum_{n=0}^{\infty} a_n z^n q$ if and only if $f(z) = \sum_{n=0}^{\infty} a_n q (\frac{b - z}{1 - bz})^n$.

\[\Box \]

Proposition 6. Let φ be a self-map of \mathbb{D}, and let $f \in H^\infty$. Also suppose that φ is neither an elliptic disc automorphism nor the identity mapping, and φ has an interior fixed point. If M_f commutes with C_φ, then f is a constant.

Proof. Let $a \in \mathbb{D}$ and $\varphi(a) = a$. Since $f \circ \varphi = f$, we have $f(\varphi^n(z)) = f(z)$ for each $z \in \mathbb{D}$ and all $n \in \mathbb{N}$. From this, we have $f(z) = f(a)$ for all $z \in \mathbb{D}$, because $\{\varphi^n(z)\}$ converges to a as $n \to \infty$ for every $z \in \mathbb{D}$.

\[\Box \]
3 Some properties of the commutant of composition operators on weighted Bergman spaces

In this section, we consider the commutant of composition operator C_φ on A^p_α for $1 < p < \infty$ and $-1 < \alpha < \infty$, where φ is an analytic self-map of \mathbb{D} which is neither an elliptic disc automorphism nor the identity and a constant. Also we assume that $\varphi(a) = a$ for some $a \in \mathbb{D}$.

Lemma 7. There exists a point z_0 in \mathbb{D} such that the iterates of φ at z_0 are distinct.

Proof. See [10].

Lemma 8. Let z_0 satisfy the properties of Lemma 7. Then the linear span of reproducing kernels, $\{K_{\varphi^{[n]}(z_0)} : n \geq 0\}$ is dense in A^p_α for $1 < p < \infty$.

Proof. Let A be the linear span of $\{K_{\varphi^{[n]}(z_0)} : n \geq 0\}$. Suppose that x^* is a bounded linear function on A^p_α for $1 < p < \infty$. If $\frac{1}{p} + \frac{1}{q} = 1$, then there is $g \in A^q_\alpha$ such that $x^* = Fg$ and Fg define by

$$Fg(f) = \int_\mathbb{D} f(z) \overline{g(z)} dA(z)$$

for each $f \in A^p_\alpha$ (see, e.g., [8]). Hence

$$A^\perp = \{Fg : Fg(K_{\varphi^{[n]}(z_0)}) = 0 \ (\forall n)\} = \{Fg : g(\varphi^{[n]}(z_0)) = 0 \ (\forall n)\}.$$

By the Denjoy-Wolff Theorem, the sequence $\{\varphi^{[n]}(z_0)\}_{n=0}^\infty$ has a limit point in \mathbb{D}. Then $A^\perp = \{0\}$ and $A^\perp = A = A^p_\alpha$, so the proof is complete.

Proposition 9. C_φ^* is cyclic.

Proof. Since $C_\varphi^*(K_{\varphi^{[n]}(z_0)}) = K_{\varphi^{[n+1]}(z_0)}$, by Lemmas 7 and 8, the proof is complete.

Remark 10. If the Denjoy-Wolff point of φ is in the boundary of \mathbb{D}, then Lemma 8 is not true in general. For example, if $\varphi(z) = az + b$, where $a, b \neq 0$ and $|a| + |b| = 1$, then the sequence $\{\varphi^{[n]}(0)\}_{n=0}^\infty$ has distinct elements and each Blaschke product with zeros $\{\varphi^{[n]}(0)\}_{n=0}^\infty$ is in A^\perp. So A is not dense in A^p_α.

By Lemma 8, we can answer to some questions about the commutant of C_φ.

Theorem 11. Let S be a bounded operator such that $SC_\varphi = C_\varphi S$ and $S^*K_{z_0} = \sum_{j=0}^m a_j K_{\varphi^{[j]}(z_0)}$ for some z_0 in \mathbb{D} for which $\{\varphi^{[n]}(z_0)\}_{n=0}^\infty$ are distinct. Then S is a polynomial in C_φ.

**

Surveys in Mathematics and its Applications 9 (2014), 139 – 147
http://www.utgjiu.ro/math/sma
Proof. Let \(p(z) = \sum_{j=0}^{m} a_j z^j \), we show that \(p(C^*_\varphi) = S^* \). By an easy computation, we have \(p(C^*_\varphi)K_{z_0} = S^*K_{z_0} \). Let \(\varepsilon > 0 \) and \(f \in A_\alpha^p \). Since the linear span of \(\{K_{\varphi^n(z_0)} : n \geq 0\} \) is dense in \(A_\alpha^p \), there is \(g = \sum_{k=0}^{n} g_k K_{\varphi^k(z_0)} \) such that
\[
\|f - g\|_{p,\alpha} < \varepsilon/(1 + \|p(C^*_\varphi) - S^*\|).
\]
Since \(C^*_\varphi K_{z_0} = K_{\varphi^k(z_0)} \), we have
\[
\|p(C^*_\varphi) - S^*\|f\|_{p,\alpha} \leq \|p(C^*_\varphi) - S^*\|(f - g)\|_{p,\alpha} + \|p(C^*_\varphi) - S^*\|g\|_{p,\alpha} \leq \varepsilon + \sum_{k=0}^{n} g_k C^*_\varphi K_{z_0}\|p(C^*_\varphi) - S^*\|_{p,\alpha} \leq \varepsilon.
\]
Hence \(p(C^*_\varphi) = S^* \) and so the proof is complete. \(\square \)

Corollary 12. Let iterates of \(\varphi \) at zero be distinct, and let \(S \) be a bounded operator such that \(SC_\varphi = C_\varphi S \) and \(S^*(1) = \lambda I \). Then \(S \) is a multiple of the identity.

Proof. Since \(K_0 = I \), by Theorem 11, we have \(S^* = \lambda I \). \(\square \)

Theorem 13. Let \(S \) be a bounded operator such that \(SC_\varphi = C_\varphi S \). Then there is a dense subset on which \(S \) can be approximated by polynomials in \(C_\varphi \).

Proof. Assume \(\varphi \) and \(z_0 \) are as in the Lemma 7 and \(S^*K_{z_0} = f \). Since the linear span of \(\{K_{\varphi^n(z_0)} : n \geq 0\} \) is dense in \(A_\alpha^p \), there exists \(f_j = \sum_{k=0}^{m} a_{j,k} K_{\varphi^k(z_0)} \) such that \(\|f - f_j\|_{p,\alpha} \to 0 \) as \(j \to \infty \). If \(p_j = \sum_{k=0}^{m} a_{j,k} z^k \), then we show that \(p_j(C^*_\varphi) \) approximate \(S^* \) on the linear span of \(\{K_{\varphi^n(z_0)} : n \geq 0\} \). Let \(g = \sum_{n=0}^{m} g_n K_{\varphi^n(z_0)} \). Since \(C^*_\varphi K_{z_0} = K_{\varphi^n(z_0)} \) and \(S^*C^*_\varphi = C^*_\varphi S \), by an easy computation, we have
\[
S^*g = \sum_{n=0}^{m} g_n C^*_\varphi(z_0)\phi_f
\]
and
\[
p_j(C^*_\varphi)g = \sum_{k=0}^{m} \sum_{n=0}^{m} a_{j,k} g_n K_{\varphi^{k+n}(z_0)} = \sum_{n=0}^{m} g_n C^*_\varphi(z_0)\phi_f.
\]
Since \(\{\varphi^n(0)\} \) converges to the Denjoy-Wolff point in the disc as \(n \to \infty \), by using similar arguments as the proof of [9, Theorem 2.3], we have
\[
\|C^*_\varphi\| \leq \left(\frac{1 + |\varphi^n(0)|}{1 - |\varphi^n(0)|}\right)^{\frac{2+\alpha}{p}} \leq b,
\]
where \(b \) is independent of \(n \) on \(A_\alpha^p \) and so we have
\[
\|S^* - p_j(C^*_\varphi)\|_{p,\alpha} \leq \sum_{n=0}^{m} g_n C^*_\varphi(z_0)(f - f_j)\|_{p,\alpha} \leq b\|f - f_j\|_{p,\alpha} \sum_{n=0}^{m} |g_n|,
\]
which converges to zero as $j \to 0$.

References

M. Haji Shaabani
Shiraz University of Technology
Department of Mathematics, Shiraz University
Shiraz 71555-313, IRAN.
E-mail: shaabani@sutech.ac.ir

B. Khani Robati
Shiraz University
Department of Mathematics, College of Sciences, Shiraz University, Shiraz 71454, IRAN.
E-mail: bkhani@shirazu.ac.ir