ON SECOND HANKEL DETERMINANT FOR TWO NEW SUBCLASSES OF ANALYTIC FUNCTIONS

T. V. Sudharsan and R. Vijaya

Abstract. In this paper, we obtain sharp upper bounds for the function \(|a_2a_4 - a_3^2|\) for functions belonging to \(S^*(\alpha, \beta)\) and \(C(\alpha, \beta)\). Our results extend corresponding previously known results.

1 Introduction

Let \(S\) denote the class of normalized analytic univalent functions \(f(z)\) of the form

\[
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
\]

(1.1)

where \(z \in E : \{z : |z| < 1\}\).

In 1976, Noonan and Thomas [9] defined the \(q^{th}\) Hankel determinant for \(q \geq 1\) and \(n \geq 0\) by

\[
H_q(n) = \begin{vmatrix}
 a_n & a_{n+1} & \cdots & a_{n+q-1} \\
 a_{n+1} & \cdots \\
 \vdots & \ddots \\
 a_{n+q-1} & \cdots & a_{n+2q-2}
\end{vmatrix}
\]

This determinant has also been considered by several authors. For example, Noor in [10], determined the rate of growth of \(H_q(n)\) as \(n \rightarrow \infty\) for functions of the form (1.1) with bounded boundary. In particular, sharp bounds on \(H_2(2)\) were obtained by the authors of articles [1], [3], [5], [6], [12] for different classes of functions.

One can observe that the Fekete-Szego functional is \(H_2(1)\). Also they generalized the estimate \(|a_3 - \mu a_2^2|\), where \(\mu\) is real and \(f(z) \in S\).

2010 Mathematics Subject Classification: Primary 30C80; Secondary 30C45.

Keywords: Coefficient bounds; Fekete-Szego functional; Hankel determinant.

This work was supported by UGC, under the grant F.MRP-4117/12 (MRP/UGC-SERO) of the second author.

http://www.utgjiu.ro/math/sma
In this paper, we consider the second Hankel determinant for $q = 2$ and $n = 2$,
$H_2(2) = \begin{vmatrix} a_2 & a_3 \\ a_3 & a_4 \end{vmatrix}$ and obtain an upper bound for the functional $|a_2a_4 - a_3^2|$ for functions belonging to the classes $S^*(\alpha, \beta)$ and $C(\alpha, \beta)$ which are defined as follows:

Definition 1. Let $f(z)$ be given by (1.1). Then $f(z) \in S^*(\alpha, \beta)$ if and only if

$$\text{Re} \left\{ \frac{zf'(z)}{f(z)} + \alpha \frac{zf''(z)}{f'(z)} \right\} > \beta, \ z \in E \text{ for some } \beta \ (0 \leq \beta < 1) \text{ and } \alpha \geq 0.$$

Remark 2. The choice $\alpha = 0$ yields $\text{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > \beta, \ z \in E$, so that we get $S^*(0, \beta)$, the class of starlike functions of order β [11].

Remark 3. When $\alpha = 0$, $\beta = 0$, we get the class S^*, the class of starlike functions [11].

Remark 4. When $\beta = 0$, we get the corresponding result of Shanmugam [13].

Definition 5. Let $f(z)$ be given by (1.1). Then $f(z) \in C(\alpha, \beta)$ if and only if

$$\text{Re} \left\{ \frac{zf'(z) + \alpha zf''(z)}{f'(z)} \right\} > \beta, \ z \in E, \text{ for some } \beta \ (0 \leq \beta < 1) \text{ and } \alpha \geq 0.$$

Remark 6. The choice $\alpha = 0$ yields $\text{Re} \left\{ \frac{1+zf'(z)}{f'(z)} \right\} > \beta, \ z \in E$, so that we get $C(0, \beta)$, the class of convex functions of order β [11].

Remark 7. When $\alpha = 0$, $\beta = 0$, we get the class C^*, the class of convex functions [11].

Remark 8. When $\beta = 0$, we get the corresponding result of Shanmugam [13].

2 Preliminary Results

Let P be the family of all functions $p(z)$ analytic in E for which $\text{Re}\{p(z)\} > 0$ and

$$p(z) = 1 + c_1 z + c_2 z^2 + \cdots$$

(2.1)

for $z \in E$.

To prove the main results we shall need the following lemmas. Throughout this paper, we assume that $p(z)$ is given by (2.1) and $f(z)$ is given by (1.1).

Lemma 9. [2] If $p(z) \in P$, then $|c_k| \leq 2$ for each $k \in N$.

Lemma 10. ([7, 8]) Let $p(z) \in P$, then

$$2c_2 = c_1^2 + x(4 - c_1^2)$$

(2.2)

and

$$4c_3 = c_1^3 + 2(4 - c_1^2)c_1 x - c_1(4 - c_1^2)x^2 + 2(4 - c_1^2)(1 - |x|^2)y$$

(2.3)

for some value of x, y such that $|x| \leq 1$ and $|y| \leq 1$.

Surveys in Mathematics and its Applications 9 (2014), 131 – 138

http://www.utgjiu.ro/math/sma
Theorem 11. [4] Let \(f(z) \in S^* \). Then
\[
|a_2a_4 - a_3^2| \leq 1.
\]
The result obtained is sharp.

Theorem 12. [4] Let \(f(z) \in C \). Then
\[
|a_2a_4 - a_3^2| \leq \frac{1}{8}.
\]
The result obtained is sharp.

3 Main Results

Theorem 13. Let \(f(z) \in S^*(\alpha, \beta) \), then
\[
|a_2a_4 - a_3^2| \leq \frac{(1 - \beta)^2}{(1 + 3\alpha)^2}.
\]
The result obtained is sharp.

Proof. Let \(f(z) \in S^*(\alpha, \beta) \). Then there exists a \(p(z) \in P \), such that
\[
zf'(z) + \alpha z^2 f''(z) = f(z)[(1 - \beta)p(z) + \beta]
\]
for some \(z \in E \).

Equating the coefficients in (3.1), we get
\[
a_2 = \frac{c_1(1 - \beta)}{1 + 2\alpha},
a_3 = \frac{c_2(1 - \beta)}{2(1 + 3\alpha)} + \frac{c_2^2(1 - \beta)^2}{2(1 + 2\alpha)(1 + 3\alpha)},
a_4 = \frac{c_3(1 - \beta)}{3(1 + 4\alpha)} + \frac{c_1c_2(1 - \beta)^2(3 + 8\alpha)}{6(1 + 2\alpha)(1 + 3\alpha)(1 + 4\alpha)} + \frac{c_3^2(1 - \beta)^3}{6(1 + 2\alpha)(1 + 3\alpha)(1 + 4\alpha)}. \tag{3.2}
\]

From (3.2), it is easily established that
\[
|a_2a_4 - a_3^2| = \left| -\frac{c_1c_3(1 - \beta)^2}{3(1 + 2\alpha)(1 + 4\alpha)} - \frac{c_2^2(1 - \beta)^2}{4(1 + 3\alpha)^2} - \frac{c_1^2(1 - \beta)^4(1 + 6\alpha)}{12(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)^2} - \frac{\alpha c_1^2c_2(1 - \beta)^3}{6(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} \right| \tag{3.3}
\]
Substituting for c_2 and c_3 from (2.2) and (2.3) and since $|c_1| \leq 2$, by Lemma 9, let $c_1 = c$ and assume without restriction that $c \in [0,2]$. We obtain

$$|a_{2a} - a_3^2| = \left| \frac{(1 - \beta)^2[c^4 + 2(4 - c^2)c^2x - (4 - c^2)c^2x^2 + 2c(4 - c^2)(1 - c^2)y]}{12(1 + 2\alpha)(1 + 4\alpha)} - \frac{(1 - \beta)^2c^4 + (4 - c^2)^2x^2 + 2c^2x(4 - c^2)}{16(1 + 3\alpha)^2} \right|$$

$$- \frac{(1 - \beta)^4c^2(1 + 6\alpha)}{12(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} - \frac{(1 - \beta)^2c^4 + (4 - c^2)c^2}{12(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} \right| \quad (3.4)$$

By triangle inequality,

$$|a_{2a} - a_3^2| \leq \frac{(1 - \beta)^2c^4 + 2(4 - c^2)c^2\rho + 2c(4 - c^2) + c(c - 2)(4 - c^2)\rho^2}{12(1 + 2\alpha)(1 + 4\alpha)} + \frac{(1 - \beta)^2c^4 + (4 - c^2)^2\rho^2 + 2c\rho(4 - c^2)}{16(1 + 3\alpha)^2}$$

$$+ \frac{(1 - \beta)^4c^2(1 + 6\alpha)}{12(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} + \frac{(1 - \beta)^3c^4 + c^2\rho(4 - c^2)}{12(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} \right| \quad (3.5)$$

with $\rho = |x| \leq 1$. Furthermore

$$F'(\rho) = \frac{(1 - \beta)^2[2c^2(4 - c^2) + 2c\rho(c - 2)(4 - c^2)]}{12(1 + 2\alpha)(1 + 4\alpha)} + \frac{(1 - \beta)^2[2c(4 - c^2)^2\rho + 2c(4 - c^2)]}{16(1 + 3\alpha)^2}$$

$$+ \frac{(1 - \beta)^3c^2(4 - c^2)}{12(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} \right|$$

and with elementary calculus, we can show that $F'(\rho) > 0$ for $\rho > 0$.

This implies that F is an increasing function and thus the upper bound for (3.4) corresponds to $\rho = 1$ and $c = 0$ gives

$$|a_{2a} - a_3^2| \leq \frac{(1 - \beta)^2}{(1 + 3\alpha)^2}.$$}

It follows from (2.3) that if $c_1 = c = 0$ and $|x| = \rho = 1$ then $c_3 = 0$.

If $p(z) \in P$ with $c_1 = 0$, $c_2 = 2$ and $c_3 = 0$ then we obtain

$$p(z) = \frac{1 + z^2}{1 - z^2} = 1 + 2z^2 + 2z^4 + \cdots \in P,$$

which shows that the result is sharp.

Remark 14. When we replace β by 0, we get the corresponding result of Shanmugam et al. [13].

**

Surveys in Mathematics and its Applications **9** (2014), 131 – 138

http://www.utgjiu.ro/math/sma
Remark 15. When we replace \(\beta \) by \(0 \) and \(\alpha \) by \(0 \), then we get the corresponding result of Janteng et al. \cite{Janteng2012}.

Theorem 16. Let \(f(z) \in C(\alpha, \beta) \), then
\[
|a_2a_4 - a_3^2| \leq \frac{1}{144} \left| \frac{M}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} \right|,
\]
where \(M = (1 - \beta)^2(280\alpha^3 + 332\alpha^2 + 128\alpha + 16) + (1 - \beta)^4(1 + 7\alpha) + (1 - \beta)^3(8\alpha^2 + 3\alpha + 1) \). The result obtained is sharp.

Proof. Let \(f(z) \in C(\alpha, \beta) \)
Then there exists a \(p(z) \in P \), such that
\[
f'(z) + zf''(z) + \alpha z^2f'''(z) + 2\alpha z f''(z) = f'(z)[(1 - \beta)p(z) + \beta]
\]
for some \(z \in E \).

Equating the coefficients in (3.6), we get
\[
a_2 = \frac{c_1(1 - \beta)}{2(1 + 2\alpha)}
\]
\[
a_3 = \frac{c_1^2(1 - \beta)^2}{6(1 + 2\alpha)(1 + 3\alpha)} \frac{c_2(1 - \beta)}{6(1 + 3\alpha)}
\]
\[
a_4 = \frac{c_1^2(1 - \beta)^3}{24(1 + 2\alpha)(1 + 3\alpha)(1 + 4\alpha)} + \frac{c_1c_2(1 - \beta)^2(3 + 8\alpha)}{24(1 + 2\alpha)(1 + 3\alpha)(1 + 4\alpha)} + \frac{c_3(1 - \beta)}{12(1 + 4\alpha)}.
\]
(3.7)

From (3.7),
\[
|a_2a_4 - a_3^2| = \frac{1}{144} \left| \frac{6c_1c_3(1 - \beta)^2}{(1 + 2\alpha)(1 + 4\alpha)} - \frac{4c_2(1 - \beta)^2}{(1 + 3\alpha)^2} - \frac{c_1^2(1 - \beta)^4(1 + 7\alpha)}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} + \frac{c_1^2c_2(1 - \beta)^3(8\alpha^2 + 3\alpha + 1)}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} \right|
\]
(3.8)

Now assuming \(c_1 = c \) (0 \(\leq c \leq 2 \)) and using (2.2) and (2.3), we get
\[
= \frac{1}{144} \left| (1 - \beta)^2[6c^4 + 12c(4 - c^2)x - 6c^2(4 - c^2)x^2 + 12c(4 - c^2)](1 - |x|^2)y \right|
\]
\[
- \frac{(1 - \beta)^2[c^2 + x(4 - c^2)]^2}{(1 + 3\alpha)^2} - \frac{(1 - \beta)^4c^4(1 + 7\alpha)}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\]
\[
+ \frac{(1 - \beta)^3c^2[c^2 + x(4 - c^2)](8\alpha^2 + 3\alpha + 1)}{2(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} \right|
\]
**

Surveys in Mathematics and its Applications 9 (2014), 131 – 138

http://www.utgjiu.ro/math/sma
Trivially, \(\rho \) with

\[
\frac{(1 - \beta)^2[6c^4 + 12c^2\rho(4 - c^2) + 6c(\ell - 2)\rho^2(4 - c^2) + 12c(4 - c^2)]}{4(1 + 2\alpha)(1 + 4\alpha)}
\]

\[
+ \frac{(1 - \beta)^2[4 + \rho^2(4 - c^2)\rho^2(4 - c^2)]}{(1 + 3\alpha)^2}
\]

\[
+ \frac{(1 - \beta)^4c^4(1 + 7\alpha)}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)} + \frac{(1 - \beta)^3[c^4 + \rho(4 - c^2)](8\alpha^2 + 3\alpha + 1)}{2(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\]

\[
= F(\rho)
\]

(3.9)

with \(\rho = |x| \leq 1 \).

Furthermore,

\[
F'(\rho) = \frac{(1 - \beta)^2[4\rho(4 - c^2) + c(c - 2)(4 - c^2)]}{(1 + 2\alpha)(1 + 4\alpha)}
\]

\[
+ \frac{(1 - \beta)^3c^2(4 - c^2)(8\alpha^2 + 3\alpha + 1)}{2(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\]

\[
+ \frac{(1 - \beta)^2[2\rho(4 - c^2)^2]}{(1 + 3\alpha)^2}
\]

Using elementary calculus, we can show that \(F'(\rho) > 0 \) for \(\rho > 0 \). This shows that \(F \) is an increasing function and \(\max_{\rho \leq 1} F(\rho) = F(1) \).

Now, let

\[
G(c) = F(1) = \frac{3(1 - \beta)^2[c^2(4 - c^2) + c(c - 2)(4 - c^2)]}{(1 + 2\alpha)(1 + 4\alpha)}
\]

\[
+ \frac{(1 - \beta)^2c^2(4 - c^2)(8\alpha^2 + 3\alpha + 1)}{2(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\]

\[
+ \frac{2(1 - \beta)^2[c^2(4 - c^2) + (4 - c^2)^2]}{(1 + 3\alpha)^2}
\]

Trivially, \(G \) attains its maximum at \(c = 1 \). Thus the upper bound for (3.9) corresponds to \(\rho = 1 \) and \(c = 1 \), gives

\[
\left| \frac{(1 - \beta)^2c^2}{(1 + 2\alpha)(1 + 4\alpha)} - \frac{(1 - \beta)^2c^2}{(1 + 3\alpha)^2} \right| - \frac{(1 - \beta)^4c^4(1 + 7\alpha)}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\]

\[
+ \frac{(1 - \beta)^3(8\alpha^2 + 3\alpha + 1)}{2(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\]

\[
\leq \frac{15(1 - \beta)^2}{(1 + 2\alpha)(1 + 4\alpha)} + \frac{(1 - \beta)^2c^2}{(1 + 3\alpha)^2} + \frac{(1 - \beta)^4c^4(1 + 7\alpha)}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\]

\[
+ \frac{2(8\alpha^2 + 3\alpha + 1)}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\].
If $c_1 = 1$, $c_2 = -1$ and $c_3 = -2$ then we know
\[p(z) = \frac{1 - z^2}{1 - z + z^2} = 1 + z - z^2 - 2z^3 + z^4 + \cdots \in P, \]
which shows that the result is sharp.

Remark 17. When we replace β by 0, we get
\[
|a_2a_4 - a_3^2| \leq \frac{15}{(1 + 2\alpha)(1 + 4\alpha)} + \frac{2(8\alpha^2 + 3\alpha + 1)}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)}
\]
\[
+ \frac{16}{(1 + 2\alpha)^2(1 + 3\alpha)^2(1 + 4\alpha)},
\]
a result obtained by Shanmugam et al. [13].

Remark 18. When we replace β by 0 and α by 0, we get
\[
|a_2a_4 - a_3^2| \leq \frac{1}{8},
\]
the sharp result obtained by Janteng et al. [4].

Acknowledgement. The authors thank the referee for very useful comments, especially, relating to the sharpness of the results in Theorems 13 and 16, which helped to revise and improve the paper.

References

T. V. Sudharsan R. Vijaya
Department of Mathematics, Department of Mathematics,
SIVET College, S.D.N.B. Vaishnav College,
Chennai - 600 073, India. Chennai - 600 044, India.
E-mail: tvsudharsan@rediffmail.com E-mail: viji_dorai67@yahoo.co.in

Surveys in Mathematics and its Applications 9 (2014), 131 – 138
http://www.utgjiu.ro/math/sma