A COVARIANT STINESPRING TYPE THEOREM FOR τ-MAPS

Harsh Trivedi

Abstract. Let τ be a linear map from a unital C^*-algebra \mathcal{A} to a von Neumann algebra \mathcal{B} and let \mathcal{C} be a unital C^*-algebra. A map T from a Hilbert \mathcal{A}-module E to a von Neumann \mathcal{C}-\mathcal{B} module F is called a τ-map if

$$\langle T(x), T(y) \rangle = \tau(\langle x, y \rangle)$$

for all $x, y \in E$.

A Stinespring type theorem for τ-maps and its covariant version are obtained when τ is completely positive. We show that there is a bijective correspondence between the set of all τ-maps from E to F which are (u', u)-covariant with respect to the dynamical system (G, η, E) and the set of all (u', u)-covariant $\tilde{\tau}$-maps from the crossed product $E \times_{\eta} G$ to F, where τ and $\tilde{\tau}$ are completely positive.

Full text

Acknowledgement. The author would like to express thanks of gratitude to Santanu Dey for several discussions.

References

2010 Mathematics Subject Classification: Primary: 46L08, 46L55; Secondary: 46L07, 46L53.

Keywords: Stinespring representation; Completely positive maps; Von Neumann modules; Dynamical systems.

This work was supported by CSIR, India.

http://www.utgjiu.ro/math/sma

Harsh Trivedi
Department of Mathematics, Indian Institute of Technology Bombay,
Powai, Mumbai-400076,
India.
E-mail: harsh@math.iitb.ac.in

**

Surveys in Mathematics and its Applications **9** (2014), 149 – 166
http://www.utmjiu.ro/math/sma