Surveys in Mathematics and its Applications

ISSN 1842-6298 (electronic), 1843-7265 (print)
Volume 6 (2011), 195 -- 202


Namita Das

Abstract. In this paper we characterize the kernel of an intermediate Hankel operator on the Bergman space in terms of the inner divisors and obtain a characterization for finite rank intermediate Hankel operators.

2010 Mathematics Subject Classification: 32A36; 47B35.
Keywords: Hankel operators; Bergman space.

Full text


  1. N. Das, The kernel of a Hankel operator on the Bergman space, Bull. London Math. Soc. 31 (1999), 75-80. MR1651001(99j:47034). Zbl 0942.47015.

  2. P. L. Duren, D. Khavinson, H.S. Shapiro and C. Sundberg, Contractive zero-divisors in Bergman spaces, Pacific J. Math. 157 (1993), 37-56. MR1197044(94c:30048). Zbl 0739.30029.

  3. P.L. Duren, D. Khavinson, H. S. Shapiro and C. Sundberg, Invariant subspaces in Bergman spaces and the biharmonic equation, Michigan Math. J. 41 (1994), 247-259. MR1278431(95e:46030). Zbl 0833.46044.

  4. H. Hedenmalm, A factorization theorem for square area-integrable analytic functions, J. Reine. Angew. Math. 422 (1991), 45-68. MR1133317(93c:30053). Zbl 0734.30040.

  5. B. Korenblum and M. Stessin, On Toeplitz-invariant subspaces of the Bergman space, J. Funct. Anal. 111 (1993), 76-96. MR1200637(94f:30049). Zbl 0772.30042.

  6. E. Strouse, Finite rank intermediate Hankel operators, Arch. Math. (Basel) 67 (1996), 142-149. MR1399831(97i:47047). Zbl 0905.47014.

  7. K. Zhu, Operator theory in function spaces, Monographs and Textbooks in Pure and Applied Mathematics, Marcell Dekker, Inc. 139, New York and Basel, 1990. MR1074007(92c:47031). Zbl 0706.47019.

Namita Das
P. G. Dept. of Mathematics,
Utkal University, Vanivihar, Bhubaneswar,
751004, Orissa, India.