FUNCTION VALUED METRIC SPACES

Madjid Mirzavaziri

Abstract. In this paper we introduce the notion of an F-metric, as a function valued distance mapping, on a set X and we investigate the theory of F-metric spaces. We show that every metric space may be viewed as an F-metric space and every F-metric space (X, δ) can be regarded as a topological space (X, τ_{δ}). In addition, we prove that the category of the so-called extended F-metric spaces properly contains the category of metric spaces. We also introduce the concept of an \bar{F}-metric space as a completion of an F-metric space and, as an application to topology, we prove that each normal topological space is \bar{F}-metrizable.

References

2010 Mathematics Subject Classification: 54E35; 54E70; 54A40; 46C05.

Keywords: Function valued metric; Positive element; Strictly positive element; F-completeness; F-metric space; Allowance set; F-Cauchy; F-completion; F-metrizable.

This research was supported by a grant from Ferdowsi University of Mashhad; No. MP89156MIZ.

http://www.utgjiu.ro/math/sma

Madjid Mirzavaziri
Department of Pure Mathematics, Ferdowsi University of Mashhad,
P.O. Box 1159–91775, Iran.
and
Centre of Excellence in Analysis on Algebraic Structures (CEAAS),
Ferdowsi University of Mashhad, Iran.
e-mail: mirzavaziri@gmail.com, mirzavaziri@math.um.ac.ir

Surveys in Mathematics and its Applications 5 (2010), 321 – 332
http://www.utmjiu.ro/math/sma